~ AD-R172 958  FUNCTIONAL PROGRAMMING(U> COMPUTER TECHNOLOGY
ASSOCIATES INC LANHAN MD R N MEESON AUG 86
CTA-B31-3817001-8602A NOBB14-84-C-8596
UNCLRSSIFIED F/6 972

z
-




Ly
.
K

v
L4
[
&
st

bagoy
?ﬂ.l l”’

5

o
k-

adiaddd -

Fr

m!o
o N

fls s

i - s
I Tl tes

EEEE

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

~ .-

_"UD"
Ao

(0 9
"“;.. “ .. \J Ko
RO TSNS ¢ N TA'MMW
1o , IR LA DEILEIN ¢ N X XD,

W S

(5% T

X v .lf' (S UL ‘.' 4
PN NN



FUNCTIONAL PROGRAMMING
SBIR FINAL REPORT

AD-A172 958

ILE COPY

-
-

]

L, r

f-_pprr»'."!f{

" z

s

4
- {

> R

! R
U R beed

[THE dacuant b o0l
i e ol e
1

'm'x'l.‘ni?"’d R

“apution s R T

o

it

e COMPUTER TECHNOLOGY ASSOCIATES, INC.

sty 'y Denver ® Washington, D.C. @ Colorado Springs ® Albuquerque ® San Jose ® Ridgecrest ® Burlington ® Dayton

" 86 9

Y/ Ne| S £ 13 0vgq

&) 1 DOGH AV .
KX \!‘,s'f\t “0,‘.!“..l".tv‘»”'J’:’,}".l‘!."~.\ li"‘n’l"t‘lf.‘!:s"!@ !L",

AR P P DAL ALY Y Do A =y y N iy e
St R R O el TN

W



*

iy
4

-«

-

B ORI WIS I > e W I
29 R "1’~“'-'l‘—‘hﬁ“u‘-ﬁ,.\'-at‘x'i‘q’l.:!\h, b gy ‘k‘J‘;, ’q',.l ottt ety

FUNCTIONAL PROGRAMMING
SBIR FINAL REPORT

August 1986

()]
D

......

F‘ ~ t" s,
—en Y
L K
‘L “'1:6 ’..r-.\;vi g
i;t
Y
. !

D% VLA

i

LR P i i CYON
N5 it

AL W




v A dia g Laca & oy W W L T P Y T ey W T e T T

FUNCTIONAL PROGRAMMING
SBIR FINAL REPORT

August 1986

ORI ’::.g'l &

)



; FUNCTIONAL PROGRAMMING
FINAL REPORT

. Reginald N. Meeson, Jr.

August 1986

SBIR Phase-II Final Technical Report
_ prepared for
ta
Office of Naval Research
under
ey

Ao Contract: N00014-84-C-0696
oY
P NR SBI-005/6-15-84 (400R)

Computer Technology Associates, Inc.

PRI 7501 Forbes Blvd., Suite 201
RN Lanham, MD 20706

,:i}rl’; - 300

Vol 301-464-5

B o,

LRy

T CTA Ref+—No:— 031-3017001-8602A
o

|

P O ) L 0 O o P R CA TR R L X R g STy "'Q-"E"ﬁ;ﬁ 8 e W Cr T .r: v ririm
'§". ;_,‘1",_.”.3\ A \.A..'n..‘.d‘: e ':' :‘J'.c ..:. 0, IJ. .5,. 3 (aIN )‘ B LSO A {' < " 1A 2 E&"L‘J& A {J‘,{.z 5



Wl

1y

‘1 EXECQUTIVE SUMMARY

> eecccco—- fadedetedadedededadededudied

B

,'v:’ This report describes the accomplishments of an SBIR Phase
?;:: II project to develop a functional programming language and
f::' graphics tools for programming via data flow diagrams. The
Ny

period covered is from August, 1984 through July, 1986. -Our

Z&' objectives and plans for Phase III are also presented.

e

_ Innovations

XA

.: ~. The chief innovations in this project were the development
:;.,,: and full implementation of a functional programming language, and
E: the development of a graphical programming technique with support
tools that translate data flow diagrams into executable code.

u.,‘.. \ —_—— —
Wy

§ %:ﬁ Accompl ishments

N

o

R The first part of our research was to develop a functional
;ﬁ:' programming language. A compiler and run-time support system for
;:" ) the language described in our Phase I1 proposal were built and

first released in February, 1985. This system was then used
' experimentally within the company. Several language ref inements
N were made based on user comments, and a second release of the
"i": compiler and run-time system was completed in June, 1985. The

o NP YD

W .,,;’_ results of further experimental use and additional enhancements
! have been incorporated in a final SBIR project release completed
e inJuly, 1986.

»,

The second part of our research was to develop a graphical
programming technique that would allow programs to be defined via

:: o data flow diagrams. We built an interactive, mouse-driven data
M, flow diagram editor and a compiler that generates executable code
'.:, from the diagrams created using the editor. The first release of
“"""' the editor was completed in January, 1986. A second release
,.:.:-,-., which includes an improved user interface was completed in June,
"'-Cf
h :}
".' () ‘
O
' iii |
SN |
SR

R Y
Qo

.
TR T T T A e e A e
HL O RS WYYV R ALY, d ASASS e

R R T R Sl AL O N T O B R SR ST Rl "
e g e S S TR L e T




TR
el

e
g
o

& & A
g

oY Py
ety

i
bl

Laad ok ad o oo a  af ok _ab R Al Al -1‘r*v-wlv!"‘““’\vv‘\-‘“‘?"V"H“‘S?“S’WTY-"Y"‘T

1986. The data flow diagram compiler was created by extending
the functional language compiler and was completed in June, 1986.

In addition to the development of these prototype products,
we have written many sample programs to test our system and to
demonstrate the practicality of functional programming. De-
scriptions of the three largest programs we have written are
included in this report. These programs illustrate many of the
advantages that functional programming provides over conventional
programming techniques. Functional programming concepts do
"scale up” and can handle large application problems as effec-
tively as simple examples.

Phase III

In Phase III, we plan to produce a commercial version of our
language and will focus our initial marketing efforts on the
sof tware research and development community. We will continue to
work on publishing the results of our research and development
efforts, and will conduct seminars and tutorials on functional
programming for selected audiences. We will also continue to use
our language and graphics tools within the company to specify,
design, prototype, and implement software. In addition, we are
pursuing research and development support to develop spin-off
ideas generated by this project. One of these, for example, is a
mul tiprocessor computer architecture that is based on our run-
time software system and is specifically designed for high-speed
execution of functional programs.

iv

e R A Tt e AN e L L A AT A
Lot e A Iy’ L] A a2 e ™ )

L a0
PN NN




I.!
53:: TABLE OF CONTENTS
"' 2 o o e 0 0 s 0 s 0 P S S B B o -
b
o
:_:‘::: Executive Summary iii
‘1,498
ll’r'l
RS
1. PFirst Year Accomplishments 1
i ‘)‘
z;:; Compiler and Run-Time System 1
' Data Flow Graphics Groundwork 3
[l LA
i“: 2. Second Year Accompl ishments 4
X
e
EC::::‘;:: Compiler and Language Extensions 4
e Run-Time System Enhancements 6
'," Data Flow Diagram Editor 7
E Data Flow Diagram Compiler 9
- Application Programs 11
Yoy
B 3. Phase-III Strategy 13
*::."t:i't:
i:l‘::\'::l
’t!:&{:gi’; Commercial Product Plans 13
% ‘. 0.
. Further Research and Devel opment 14
’0.;!;.'“
References 16
Annexes

A. Ernest User's Guide
B. Van User's Guide

C. Application Programs
e,:.;.t' D. Bibliography

.0 o

Q'H

l. . ~§
N ‘n,"n’ )

v
-‘-
‘*" S S at \'-7-&-\- A ‘u.\‘- u "'"“.r-.a“'-r“-‘
i e W bR X KRR . o 580 AN
..‘G:‘,.‘ Wy o G‘.", Ry "‘ (R 5.;‘ oy .,_ ,. AR AT .0 .! - "0".0 Ral o "L '!sll- P A 4




e TV ERY Wy WU T WY WY WY W OWIT Y T W TP TR T I YT 'ml“m““-"-’!T

1. PFPirst Year Accompl ishments

PSP Ty S PP SRR L ettt etk ettt dadadad

Our goals for the first year of this project were to develop
a compiler and run-time support system for a functional program-=
ming language, and to develop some basic building blocks for our
data flow diagramming tools.

Compiler and Run~-Time System

Our first efforts were directed at building a compiler and
run-time support system for the functional programming language
we developed (on paper) in our Phase I project. Our approach to
the development of the compiler was to use an automated parser
generator (Zuse [1l]) and to program translation action routines
in Pascal. The compiler produces a low-level form of functional
program code, which is then executed by the run-time system. The
run-time system was also written in Pascal.

The compiler was constructed by transforming the BNF grammar
for our language (see Annex A, Appendix A) into the LL(1l) form
required by the parser generator. With this grammar and a few
pages of Pascal code, we constructed a language recognizer, which
performed no translation but could read functional program code
and detect syntax errors. The development continued by incre-
mentally adding and testing Pascal code to perform the transla-
tion of each component in the grammar. This approach produced a
highly reliable and easily modifiable end product.

The run-time system was developed in parallel with the
compiler. 1Its function is to interpret the low-level object code
produced by the compiler. The form of this object code (a
combinator expression tree) was standardized early in the pro-
ject, which gave the compiler and run-time system a well-defined
interface and has proved quite successful. The run-time system
is based on a technique developed by Turner [2]. It executes the

o \.‘?‘,_r‘ﬂ‘q o ~’ 'Q ﬁ_r.. ST AT .‘r ':)s .. v, -ri.f-s_),\:,\)-.f\ ~

O )

fl‘

&



-----

low-level object code by a success.on of tree transformations and
arithmetic and logical operations.

One of the features of our run-time system is the garbage-
collection algorithm. We adopted an algorithm called storage
scavenging, which had been developed for SmallTalk [3]. One of
the few characteristics our language shares with SmallTalk is
that the run-time systems consume storage rapidly, while the
programs themselves take up relatively little space. Storage
scavenging takes maximum advantage of this and has proved to be
very efficient.

An informal evaluation of our functional language and its
compiler and run-time system was conducted first by writing a
number of functional programs ourselves, and then by distributing
the user's guide and software within the company. The comments
we got back and our own experience with the language indicated
the need for several modifications and enhancements. Chief among
these were calls for higher performance, type checking, and
better documentation.

The second release of our language contained three features
that had been omitted in the original implementation: a name,
patterned arguments, and separate compilation. The language was
named Ernest -- so that we could say we were programming in
Ernest. Patterns provide a very convenient notation for describ-
ing structured data such as records, sequences, and trees, which
are awkward to manipulate with primitive operations. (See pages
10 and 11 of the Ernest User's Guide in Annex A.) Separate
compilation of functions is a natural extension of our original
language, since all functions are "pure" code and are independent
of any surrounding environment. These extensions were relatively
easy to make by modifying the grammar and adding new translation
routines.

.,‘
s .



To improve run-time performance, we added a number of new
primitive tree transformation operations and high-level function-
forming operations. The new tree transformations are hidden from
users but they reduce the size of the intermediate object code
and yield faster execution [4]. The most common high-level
function-forming operations (construct, filter, generate, map,
reduce, and scan) were added to the interpreter as built-in
operations. These operations use less storage and run consider-
ably faster than their user-defined counterparts.

In addition to the changes in the software, we completely
rewrote the user's guide. The syntax and features of the lan-
guage were more thoroughly described and the new built-in func-
tions were fully documented.

Data Flow Graphics Groundwork

The first graphics program we developed was to draw data
flow diagrams from a detailed specification file. This program
could display complete data flow diagrams and provided a basis
for the development of the interactive diagram editor. In addi-
tion, the specification file was standardized as the interface
between the editor and the data flow diagram compiler.

The graphics software was built in several layers. The
first layer provided a GKS-like interface to the commercial
graphics package we used. The second layer positioned and drew
data flow diagram symbols. The third layer added text for symbol
labels. The top layer, at this level of development, read an
interface file and displayed the specified diagram.

........

T N S S R B e T e e e T Dl '%{'\( N RS CSERT '-"""‘i‘.‘“‘ O
R R LA A D S G AR 4 R S0 ) A SO I S AL N 0 04




o

s

Ea ™ )

\ -

oy

Kot 2. Second Year Accompl ishments

.\_nm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A&7

'\3 Our goals for the second year of this project were to
=ﬁ§ improve the capabilities of the Ernest compiler and run-time
ho . . .

:tﬁ system, to complete our data flow diagram editor and compiler,
h and to conduct evaluations of the practicality of functional pro-
;ﬂ; gramming for application software development.

e

=

Pk Compiler and Language Extensions

4%

_;R The most significant changes we made in the Ernest compiler
?;ﬁ were to split it into separate passes. This simplified the
i:@ programs for each pass and allowed us to experiment with new
) ...‘"

r; features more easily. The first pass reads Ernest source code
[ and produces an abstract syntax tree (AST), which is a half-

digested form of the original program code. The second pass
gf reads the abstract syntax tree and generates object code for

. execution. The configuration of these components is shown in
o Figure 1.

La

I

2

;; We made significant improvements in pass-one in the report-
;J ing of program syntax errors. We also added procedures that
’ii attempt to repair simple errors such as missing parentheses, and
§3¢ to resynchronize with program source code after more serious
t flaws such as omitting the "else" part of a conditional expres-
w3 sion. (Earlier versions of the compiler simply stopped at the
R first error.) 1In pass-two we added several peep-hole optimiza-
ﬁa tions and found a way to share objec- code that had been dupli-

cated earlier.

An additional, intermediate stage was to have been added to
the compiler to provide type checking. Our original approach was

‘.(' ¥.\‘ '., .Nlj
AN MO

A

to infer or derive all the necessary type information directly

"

from function definitions and program code, as described by

M\
s

o

Milner [5]. This approach simplifies function definitions by

B

LN Ay R

LRI ]

PR AR S ARty VA A e

Pl e, . e
T T S e N \ y
AR ST SEARE S A I M AN LA AN N AR AP




— —————— e = ——— —— . — — Y Y T —— T — ———— —————— s ——— —— o —— ——— T T —— —— —— —— —— .

Error
Messages
pe

A’- —\_
oy
T

T T .-
o~ Ernest Ernest Cade Ohject
L Source Parser Generator Code

_-..__._

Abstract
Suntax_Tree

ol
1 v T \\\

o S
Aty
|

P — .
5 :' Type (;ata_Flou Data_Flow
Ay Checker Prawer Diagrams
.
-\,f:} /L\ \
«. S . N
X
':ﬁi Analysis |
3 ﬁg* Reports |
‘P |
:, , Figure 1. 1Two-Pass Ernest Compiler Configuration :
.I::::_E‘;
,.:::::: eliminating redundant type specifications and, at the same time,
'A\.-Q
Ko allows the broadest interpretation of each function's type. The
" ' algorithms for this analysis have been developed and tested (see
':x_, Annex C), but they do not provide a sufficient type mechanism for
*‘:4.2: a practical programming language. Hence, we have not yet
*..*i-‘
ol

incorporated them into the compiler.

The application programs we developed immediately indicated
_Z;._’_ needs for enumerated and variant-record types. Declarations for
’i"ml‘_; such types cannot be inferred from function definitions or pro-
; * gram code. Ernest must, therefore, be extended to capture this
':"i"'_i_:::j: essential information. Enumerated types are straightforward.
'“EJ; Records are more challenging because we would like to allow
4T

programmers to specify types with the same level of generality
(i.e., full polymorphism) as types derived from function defini-

o Ve e

uguhu.ugxshguhnLLLALi14‘31£



k. ’l, -n
s,

LXK KW N
o

Lof WL

”

&

Vet Julf S R )

: A
h r,.?;. }.' -

-

- B ol

tions. Integrating type declaration facilities into a language,
though, must be done carefully and cautiously to avoid the pit-
falls of complicating program specifications and unnecessarily
restricting type definitions. Furthermore, it may not be pos-
sible to make only a "minor" extension for type declarations.

Run-Time System Enhancements

Our highest priority for the run-time system was to improve
its performance. Both storage space and execution speed limit
the scale of application programs that can be implemented using
our system. Hence, we were motivated to make improvements
wherever possible. For example, to conserve storage space, ve
developed a more compact internal representation of sequences and
character strings. We also made substantial improvements in both

the compiler and the run-time system by streamlining I/O opera-
tions.

Before making these changes, we investigated three promising
alternative apprraches to run-time environments that had been
reported in the literature. We found that one, the G-machine
(6], would not provide significantly higher performance. The
second, supercombinators [7], would require more extensive modi-
fications to the compiler than we were prepared to undertake.
The third, threaded code (8], would significantly reduce the
portability of our prototype system. Hence, we chose to continue
to refine our original approach.

Our second priority for the run-time system was to solve a
shortcoming of demand-driven or "lazy" evaluation that prohibits
the concurrent generation of multiple output streams, and can
cause extensive buffering of input streams. This is not a
serious flaw for experimental use of our language, but it would
be a severe restriction in a full-scale commercial product.




3

TN

3

)

“'; The problem is that functional languages do not directly
o control the sequence of input operations or the sequence of
i expression evaluations. The compiler and run-time system handle
M these "details." The standard technique, which is called demand-
:% driven or lazy evaluation, is to read input and evaluate results
;ﬁ‘ based on demand for output. This concentrates all processing on
' generating the next output value. 1In programs that share a data
.-'_c:: steam between two or more functions, however, this technique
;;_.“_:.':l insists on evaluating one function completely before it starts on
""':E*‘ the next. In the meantime, while the other functions that share
a the stream are suspended, the entire stream must be stored in
~:_.j memory. This can require more memory than is available, which
.i;?_l could cause the program to fail without generating any output at
e all.

R

.

;:i».;‘ Our solution to this problem is a variation of lazy evalua-
-') tion, which we call "just-in-time evaluation." The concept
_5.':‘_11-;1 behind this technique is to evaluate any pair of functions that
o share a stream in parallel, so that the stream is consumed
_:(.. sequentially and does not have to be stored. In a multiprocessor
l‘k:f- environment, two such functions could be scheduled so that they
3;:;3;:: consume their common input at the same rate. The effect is
S similar to the just-in-time scheduling techniques used in indus-
-",._ﬁ try to facilitate work flow and minimize inventories (i.e.,
::::i:‘; storage). We have completed the detailed design of a scheme that
}:;} simulates the parallel evaluation of stream-sharing functions in
i our uniprocessor environment. Its incorporation into the Ernest
-‘::: run-time system, however, has been deferred to Phase III.

“ﬁ'{‘ﬁ

2 "i-:',: Data Flow Diagram Editor

.

.:Lj::’:: The first major piece of new work completed in the second
J_tx-;{_ half of the project was the development of a data flow diagram
'!'; :_';::: editor called Van (deGraph Generator). The concept of operations
'_f"_ '_ for Van is to allow programmers to specify functions by creating
t::‘._' and manipulating data flow diagrams interactively on software
N

ROV J

3'0!.'&!,.2‘\ 7

7S

% o

0 o S M e T e e N e T SR D S i i N N s
i:" 3 ‘Q“i.l- h“i"‘h ‘h < J'.')' ° "' by '-' \"‘ \"" " " SN b n A u BL K M ot !D‘., i‘!‘ Py n ’b AR N Ml A "’ 3 ',. N2 ,~




o !
4‘ A
P
(3N

b - o ‘. R N N S P
[ 4 | 3! ) ‘ )
u"‘l“x.' ‘." o -Q"‘l’ ‘r"‘}.‘,ﬂ Xk o 1§ Vg 879 4 K 5 * (

development workstations. The ultimate purpose of the editor is

to create a data flow programming environment in which diagrams
can be compiled and run like ordinary programs.

Van appears to directly manipulate the diagram displayed on
the user's screen. In fact, however, it manipulates a set of
internal tables similar to those used in the simple drawing
program described earlier. The image displayed on the screen is
a projection of the data in these tables. The editing operations
supported include:

(1) Adding, deleting, and moving diagram components using the
mouse;

(2) Adding, deleting, and modifying diagram nomenclature such as
component identifiers and comments; and

(3) Retrieving diagrams to be displayed, edited, or printed, and
saving them after they have been created or modified.

Complete descriptions of the editing commands are given in the
Van User's Guide in Annex B.

Data flow diagrams capture almost all the information neces-
sary to compile them into executable code. An example of an item
that is not represented, though, is the order of function argu-
ments. There is no concept in data flow diagrams that flows
enter a process in any particular order. There is no way, for
instance, to distinquish between the data flow diagrams for the
operations "a divided by b"™ and "b divided by a." Of course,

b
1
4

this is essential information for converting data flow diagrams &
into executable code. An additional service provided by the E
editor, therefore, is to collect and record this information and N
allow the user to change it if necessary. S
1

Van was designed to handle only small diagrams that can be L
drawn on a single screen. Realistic programs are much larger :i:s
l‘

o

than this and require multiple levels of definitions. Van,

therefore, creates tree structures of single-screen diagrams and éﬁ
N

AN

e

A\

8 Y,

AN

L SRR N N AT LI N IR L L L)
e S dat Ay Tat ey \ —-.'I*',."\'(*-".'n" ANANAS




L)
‘.._“ AR
»

:"" r,‘l A
) ,
4‘&’;&% 3
ﬂ' h

A LA e
e, . .\t"&';‘ '. Wil

WY R T rwrT ey wrro sy e L da oo £ oio- on- ook ae aid aa oth aid aax AR e d o s atd ach o

A e

provides "zoom-in" and "zoom-out" operations, which allow users
to probe down into process definitions or to take a step back and

observe the program from a broader perspective.

With van, we followed our standard method of building a

rough version of the program and then distributing it within the
company for evaluation. In this case we had several members of
our human factors staff critique Van's user interface. They
identified a number of problems (which were not obvious until
they showed them to us) and suggested several improvements. All

of their suggestions were accepted and have been incorporated in
the final release of Van

Data Flow Diagram Compiler

The second major development in this part of the project was
a compiler that translates data flow diagrams into executable
code. Current software development techniques that use data flow
diagrams for design require a manual conversion of the non-
procedural diagrams into procedural programs. The disparity
between the procedural and non-procedural views of the problem,
however, makes this conversion a difficult,
error-prone task.

time-consuming, and
Our solution is to interpret the diagrams as

functional expressions and eliminate the conversion to procedural
code.

The front end of our compiler takes the tabular descriptions
of data flow diagrams -created by the editor and constructs

equivalent abstract syntax trees. We then use the second pass of

the Ernest compiler to generate executable object code. The
configuration of the data flow diagram compiler is shown in
Figure 2. This arrangement will also accommodate the inter-
mediate type-checking pass when it is completed.

The construction of abstract syntax trees is relatively

straightforward if the data flow diagrams represent pure func-

i '-'_‘- e e I q'."—* " .,,‘_‘ v- Fl
Pl 3D ! .‘..‘!» ,»I. N T el o

i a'd a'h a2 de s st s sk o8 i h A B 2 8 RS Sk A Aad Sad el Sal Tal el




Wy
t“:|‘
UM 000000 e e e et e e e e e e e v e = e e = — ——— ——————————— — ——— o ————
g
oy
Mo Ervor
o Messayes
. »
A /
l"
EN ) A el
B - TN
q -~
e Editing Data_Flow Data_Flow Code Object
Commands Edi tor Parser Generator Code
i . \ X
R /N ~—
B
'l""I:
[} ..l
:o".t _ T T
00 Data_Flow Ahstract
. Diagrans Syntax _Tree
e m————— -——

,g&.
LY
O,
g 4
e k Tupe Analysis
wa Checker Reports
)

0!
:t J,.,‘ SN
2

4
% Figure 2. Data Flow Diagram Compiler Configuration
L CTTTTTTTTTTTTTTTTTTTT T T
o
:‘i tions. The data flow tables contain all the required structural
0% information in the form of a connectivity matrix. The interface
o and process tables contain the names of all the parameters and
4 : . :
ﬁf functions referenced. The compiler picks out the formal para-
:;* meters for the function being defined and builds a parse tree by

$
'QJ tracing the structure of the expression represented by the con-

nectivity data.

S I
4 The only serious difficulties we have found are in compiling
o5 l‘
by data flow diagrams that contain data storage components. Data
- stores are the only history-dependent components in an otherwise 3
"ﬁﬁ completely side-effect-free technique for specifying computa- !
:{; tions. They introduce the possibility of unpredictable and non- A
e reproducible program behavior, because there is no way to control {
i the order of updates or references to the stored data. Since ¥
L)
o g
c’,‘a‘ ¢!
i 4
et 10 X
i [
§ ¢

‘A
Y oy e atnt Y o /A o o L0 o o L U P S0l o Op e Lol
é'. -)J "1""',‘»."» ,‘-"._‘.g‘ '»"‘-C"- LX) ‘».,:. -.\5 A8 %y .:0.‘%.%’. 00’ o .‘ ay N " § . L ol LA 00,0 40 MO - R E P X W8 R l’




T TRETTIETY L aag - - W T N TN TN TN N TN TN T T PN Y Y ¥

o
f'.:,
Y
:‘!
e : . L
§\. functional programs are free of side effects, their behavior is
z& always reproducible (even if incorrect). Hence, we have had to
S

restrict the use of data stores to a well-controlled set of
f} function-forming operations, namely: "generate", "reduce”, and
3 "scan."
7 ."
K

Application Programs
o
g

4 To evaluate the utility of functional programming in practi-
(= cal applications, we developed three programs that are signifi-
N L
cantly larger and more complex than the simple examples we used
earlier to test and demonstrate Ernest. Our source for these
v programs was from company software development projects (includ-
‘\. $ . . .
ing our own), where we have used Ernest for design and rapid
prototyping. In this section we briefly summarize each of these

o projects. More complete reports are included in Annex C.

o

%Eﬁ The first (and largest) of these projects was to develop an
e interactive tool to analyze the effects of automating job activi-
”ﬁ-; ties on personnel and operations at NASA ground control centers.
§§£§ This analysis is valuable because automating job activities does

not always have a positive effect on personnel and overall system
performance. The program we developed allows a user to investi-

uﬁgﬁi gate a hierarchical model of the characteristics of functions and
‘);fk tasks associated with control center operations. The user can
‘;)% display data at any level in the model and can experiment with

p changes in work activities to determine the expected effects on
;{i& personnel and system performance. This program consists of
;ﬂaﬁ approximately 1000 lines of Ernest source code for function
Wi

definitions and approximately 700 lines for the definition of the
model data structure.

i \\i. I J
:i}iﬁ The second project was to prototype the type checking
:vﬁxﬁ algorithms that we will use in extending the Ernest compiler.
N Ernest does not require the programmer to specify any type infor-
;ﬁ&::: mation in function definitions. The program we developed derives
R
»'l'o'l “\.o
Wl
'l’:'l':‘l':
T, 11

".’ - - » . N> * .
A At L R e T 5 A R N 0 S e B S A AT




eg o
2 s
i R

4

ades

(AN

LA '._ '..

g 0, o N0
AN

~alf}
>
Fd

cus i

Lo

o'y"

-
L ]

2

=

t “-“ ll

l ’. ‘l

the most general interpretation of a function's domain and range
directly from its defining expression. A key part of the type
checker is a unification algorithm similar to those used in
interpreters for logic programming languages. The type checker
of ten produces more general and more useful functions than the
programmer would have specified. The prototype type checker
consists of approximately 400 lines of Ernest source code.

The third project, which is not yet complete, is developing
an expert system to support space science research. This work is
part of a NASA Phase I SBIR project to evaluate the applicability
of expert system techniques in space research. The knowledge to
be represented in this system includes the relationship of
features in remote-sensed data to the solution of specific
scientific problems. This knowledge will be applied to selecting
archived data and screening new data for scientific investiga-~
tions. The inference engine for this expert system consists of
approximately 350 lines of Ernest souce code. The scientific
knowledge base and inference rules have not yet been developed.

We have recently started a fourth project to implement a
collection of signal processing algorithms in Ernest. These
algorithms will include Kalman filtering, fast Fourier trans-
forms, and non-linear and adaptive filtering.

" S L A I PRIt S gy s T /f L4l Al ATt At
g ‘ R "‘ (tf e f~- -('1 f‘ﬂ \-\,\ L :




BV PV BT T N TR

gy 3. PHASE-III STRATEGY

-y meee~ PO - o o oo v 0 v w0 v o o o o

‘,' Our strategy for Phase III has two major thrusts. The first
;_S is to develop and market a line of commercial functional program-
) ming products based on the prototypes we have developed in this
project. The second is to attract further research and develop-
2'&" ment support to investigate spin-off ideas that have come out of
,%, our Phase-I and Phase-1I work.

"\

Commercial Product Plans

A,

Our first product goal is to market a functional programming

;::‘,. "discovery" kit which will include production versions of our
'1‘2"‘_ Ernest compiler and run-time system. Our target market segment
f,.:\_ comprises computer scientists and software engineers who need to
,:}';:Zj maintain (i.e., broaden) their professional skills. The program-
f\$ ming languages we have to compete with in this market include,
VAT primarily, Prolog and SmallTalk. However, Ernest will be a
!._:; unique entry because there are no other functional languages on
;’-J-'.;k?_ the market.

0 -

Al

o N Each discovery kit will include a tutorial on functional
:;..;".;n' programming, an Ernest User's Guide, and a diskette containing
: “‘_A;' the compiler, run-time system, and example programs. The first
! "':»3 offering will be for IBM-PC and compatible microcomputer systems.
ivf!\ We will handle initial distribution ourselves until sales can
_‘.r" sustain additional distribution channels.

1{ Second-generation products will include higher-performance
"':-", versions of the Ernest compiler and run-time system and versions
.- ' for other computer systems such as DEC VAX's, Sun workstations,
E;lfj:.?T: and Apple Macintoshes. We will also introduce production ver-
'J:f,‘.-,:l:i sions of our data flow programming tools.

’ 'c ‘ ‘

RaU Y

s

’E::,?.:""..

Vontthe] 13

ATANA
il
o '.. LR -"- A L, . PN vn'{:‘,‘»‘ T ". Jele A %Y
‘?.«i; ‘A'!'q"!"&. '.B‘ A.‘. u *" l'a ‘( 2 WALV O oUW . d




. W Jj9 W S ey W F.wm RNV L4 'Y ¥

e el ted. cuk i seg ol Sod Wl and dag ool ook aald das Snd Sk St Bak Yol aed ol fah Ind Ral b Baltiall bl T Rt AL A A A AR ]

Ernest and Van will be promoted through new product an-
nouncements, news releases, and limitted but well-focused adver-
tising. We have collected readership profiles and advertising
information from the leading professional journals and popular
microcomputer magazines. We will register product announcements
with all of these publications and will advertise in those that
reach the largest number of prospective customers. We also plan
to purchase mailing lists from these publishers for direct mail
advertising.

Further Research and Devel opment

Research projects frequently raise more questions than they
answer. In our case we found a number of interesting ideas that
we think are worth further investigation. For example, we
observed in Phase I that Ada's generic facilities could be used
to define function-forming operations [9]. (These operations are

an essential component of functional programming languages.) We
also observed that Ada's overloading mechanism provides another
form of function generalization found in functional languages.
We would like to investigate these characteristics further to |
determine how Ada might be extended to support functional program
specifications. Another approach is to see if we can marry Ada
and Ernest and gain the advantages of the special features of
both languages.

Mul tiprocessor computer architecture is another area that we
would like to investigate further. Machines with literally thou-
sands of processors have already been built using conventional
hardware technology. No conventional programming languages,
however, are able to support software development for these
machines. On the other hand, functional languages offer ideal
characteristics for highly parallel execution. They provide no
mechanism for specifying sequential operations and they are free
of side effects. This allows subexpressions to be evaluated
freely in parallel.

.
.'\-
-
‘-§
(
"
A (.
. - - . I - . ‘
o) Ca 0" l o -' L AT A A " MG -.,'\- Sy ',x:’\.‘ T _\, -,.-.; ‘\ » :;j
A.} J'th fn.." {AC&M 1% \_‘L\.‘L'L.SL o Wi 1% T -'r. A e ArL.‘r_x LA.._.'LL NN TN




rrorreT

e - A W RO W W W T R R T NN R YRR VT LR e R Ry TR TR T

Previous approaches to multiporcessor architecture have been
almost entirely hardware driven, with little or no thought given
to the software required to solve application problems. The
result has been a succession of incredibly powerful machines that

nobody can program.

We are addressing the multiprocessor design problem with an
entirely different approach; namely, by developing the software
first. Ernest's run-time system emulates an abstract non-von
Neumann machine that executes the object code produced by the
compiler. Our multiprocessor architecture concept is to build a
machine that can execute our object ccde directly.

15

R ::»::&}::-:m:-&m.?}:;:»x:-::':.wz;i




.
A

KA J 0 OO
r‘.l"l’-“(’l n.l‘.’l Dy Q,Q'u'!".‘t‘q!l":!‘|

REFERENCES

> ar oo o v as > A O8 w ov v o o -~

Pyster, A., ZUSE User's Manual, Dept. of Computer Science,
Univ. of California, Santa Barbara, TRCS81-04, May 198l.

Turner, D., "A New Implementation Technique for Applicative

Languages", Software--Practice and Experience, Vo'. 9, No. 1,
1979, pp. 31-49.

Ungar D., "Generation Scavenging: A Non-Disruptive High Per-
formance Storage Reclamation Algorithm", Proc. ACM Symp. ©on

l;.g.;_c_tis.a; Software Devel. Environments, April 1984, pp. 157-

Turner, D., "Another Algorithm for Bracket Abstraction", J.
of symbolic Logigc, Vol. 44, No. 2, June 1979, pp. 267-270.

Milner, R., "A Theory of Type Polymorphism in Programming"”,
%‘35‘“ Computer apnd System Sciences, Vol. 17, 1978, pp. 348-

Johnsson, T., "Efficient Compilation of Lazy Evaluation",

Er_o.c% Bs%sg_PLAN !84 Symp. on Compiler Copstruction, June 1984,
pPp. -69.

Bughes, J., "Super-Combinators, A New Implementation Method
for Applicative Languages", Conf. Record 1982 ACM Symp. on
LISP apnd Functional Programming, August 1982, pp. 1-10.

Loeliger, R., Threaded Interpretjve Languages, Byte Books,
Peterborough, New Hampshire, 1981.

Meeson, R., "Function-Level Programming in Ada", Pro¢. IEEE

€5 1984 Conf. on Ada Applications and Environments, October
1984, pp. 128-132.

16

SO Y - - ‘.‘~ e LN .t .\- " . -“{/\:{A.'--"'-“'“N-

-
o R OO
% £ WS AA IS RSN O W IE A RGN Ay




Annex A. ERNEST USER'S GUIDE

i s ek



P 2 S nr Y

P A A W

- -~

EIENN

ERNEST

b Functional Programming

User's Guide

) Version iii A

July 1986

L P

R e T R R R R A AR S RN UL &y
N NN NI IR R ORI . {



LR L A I B A A A A Rt i atad o Yk iat oAt S S ted Ball SB Ak Aol A d i va Si e S i Roa S0 Ga” AR 8 e VARl he “ion - b s o n aad el e ]

Ernest

Functional Programming
User's Guide

Version iii

July 1986

Reginald N. Meeson, Jr.

Computer Technology Associates, Inc.
7501 Forbes Blvd., Suite 201
Lanham, MD 20706
301-464-5300

This research was sponsored by the US Navy, Office of
Naval Research under contract number N00014-84-C-06096.

A 4 s NN “'S:‘f" » L"A{:t!({.)}‘:‘fuﬁ!’ﬂ\"%:‘&‘:"?f.'?)'S}St\.)‘ ATANY, "




Copyright (c) 1986, Computer Technology Associates, Inc.

4

"'.:g Permission to copy this document for personal
or educational use is granted provided that

S copies are not made or distributed for com-

N mercial advantage.

-
-

e
",

[
Lot el

Y PRIERT 5™ 25 WP P B TR TR A R e T TR R N 5N A v W30
REORER NI YL e L AR g L L 00 LELLOL L LDt o L OO N DL e TS N, b\&‘t. h

¥ .




e
XA
W
“
0 _TABLE OF CONTENTS
R
.
o Preface v
0
0 1. Overview of Functional Programming 1
%; Backgr ound 1
k%i General Concepts 2
s
i 2. Ernest Syntax and Features 5
}$ Identifiers, Symbols, and Literals 5
el Arithmetic and Logical Expressions 5
¢ N Conditional Expressions 6
oA Sequences, Streams, and Strings 7
St Function Definitions 8
iy Function-Forming Operations 10
Lody Input and Output 14
»a < Program Structure 14
R
zgq, 3. Example Functional Programs 15
0
- Numerical Programs 15
ﬁﬁg‘ Non-Numerical Programs 17
'O}olt.p
}ﬁﬂz 4. Programming in Ernest 21
s
“ References 23
Y]
1RV Y
OGS
:Jﬁﬁ Appendices 25
Sy
e A. Ernest BNF Grammar 25
R B. Predefined Functions 27
'Weg ; C. Function-Forming Operations 2)
$M'“» D. Compiler Operation 31
ﬂx* E. Error Messages 33
;4;:' Index 35

UL

(%’ ’?
e t% %
Rt
WS
RS
» l.' )
P
e

o' °\

T iii
". n.~.
Pl p\"‘

” LS R

[\ NSO ALY v' BT T 'ﬁ"‘.q"ﬁ:‘“ TR ) N "F’-\ﬁ‘ ' - M “"?4“‘".'4".-.
Db A A Y S0 ', 2 S YL B S e B e'\:').%'&.'t-“l. J‘Q.l.'l‘«‘&!“h'h o

n\v \"-\‘-‘-

\




RN

e

PREFPACE

:‘.. e e e ar e ap o ow s e av av oo e

W

& This manual is a guide to a functional programming language

'\-,:; called Ernest. Ernest is intended to be a general purpose lan-

g > guage. That is, we have not tried to focus on any particular
? application area or quess how people will use it.

o This manual is not intended to be a tutorial on functional

.-._- programming. The example programs presented illustrate many of
S the basic concepts and we hope they provide sufficient guidance

,, for the diligent reader. A more comprehensive tutorial is in

Y preparation.

AT AN Both the language and its implementation will continue to

e evolve. The primary reason for distributing the present release

“:" of this package is to introduce the concepts of functional pro-

.,,_-f;.;-'\ gramming and to determine the product's readiness for commercial

N release.

Ty

We invite your comments. Once you have had a chance to try

j'_-';'_‘,f out our language, we would like to know how you think we could

(ol improve it. That includes functional programming in general,

e Ernest in particular, the compiler and interpreter, and this

R user's guide. We will attempt to incorporate all viable sugge s—

. tions as we continue to develop this product.

BN

XBoCes Development Status

'1““‘\._1

RO The compiler and run-time interpreter were developed as part

aly of the prototype implementation phase of a Small Business Innova-

H{x.»-..-.' tive Research (SBIR) project sponsored by the US Navy, Office of

\.-.}3__ Naval Research. This software is written in ISO Standard Pascal

f_«.::\_{: -- except for the dynamic storage management code -- and runs on

PN IBM-PCs and compatible machines. The programs require at least

Loy one disk drive and 128K of memory.

The following features are currently supported:

Integer Arithmetic ("+", "=%, "*" /"  1od)

-;;I:-{_-, Logical Operations ("&", "I", "°")

- . Relational Operations ("=", ">", ">=", etc.)

e~ T . . -~

‘;::;::}_::;;:: Sequence Operations (head, tail, ":", "°")

R Boolean, Character, Integer, and String Data

) A "

K3 :::t:j:::i Function-Forming Operations

N

;; ‘, Separate Compilation

WA Type checking, real arithmetic, graphics primitives, and

‘:ZC‘E,;:,’;;-::; file 1/0 are on the list of things to be added.
.’ ]




! Distribution Package

The current distribution package consists of this manual and
a single 360KB diskette. The diskette contains the following

5 files:

3, OL IVERL.EXE GCD. FUN GCD. HBC

N OLIVERL.TBL RANDOM. FUN RANDOM. HBC
. OL IVER2 .EXE PRIMES. FUN PRIMES. HBC
" OLIVER2.TBL LENGTH.FUN LENGTH. HBC
" SHERBERT.EXE REVERSE. FUN REVERSE. HBC
* FUNGO. BAT WORDCNT. FUN WORDCNT. HBC
3 SORT. FUN SORT. HBC

[y

M The files in the first column contain the compiler, the run-
¥ time interpreter, and a convenient batch command file for compil-
Y ing and executing programs. Their operation is described in
= Appendix D. The ".FUN" files contain the example functional
programs discussed in Section 3. The ".HBC" files contain the
compiled object code for these programs.

i
v

4

s

o

: Manual Organization

™ The material presented in this manual is organized in four
) major sections. In the first section we present an overview of
- functional programming, which introduces some of the general
% concepts and includes some background on the development of the
K functional approach.

. The second section presents the rules for formulating pro-
“ grams in Ernest. This includes discussions of arithmetic and

logical expressions; sequences, streams, and strings; applicative

ot function definitions; and function-forming operations.

l’

In the third section we present a series of example func-

tional programs, which 1nclude numerical and non-numerical appli-
cations.

. -':‘

The fourth section presents a brief set of guidel ines which
b, we hope will help new users to develop functional programs.

‘ In addition to these major sections, there are five

K appendices which include a BNF grammar for Ernest's syntax, a
&N list of predefined library functions, definitions of built-in
K, function-forming operations, directions for compiling and running . V"
:f programs, and a compendium of error messages and their possxble-
: causes.
n
$ Reg Meeson
Lanham, MD
) July 1986
i
™ vi gy
P R
R S R TR+ o A RS AR O NPT ¥ s




e U O 7Y U Y W PTIE

1. OVERVIEW OF FUNCTIONAL PROGRAMMING

O P G B AP P > AV B P P " P B " P O " G PP EP S O S PO EP Cw O B v - Y P " S P>y O Sy o=

Ernest is a programming language that supports a very high
level, non-procedural approach to software specification. Ernest
provides facilities for defining simple functions, plus a set of
powerful function-forming operations for constructing more com-
plex functions and complete programs. Ernest operates entirely
with functions and does not support the definition of step-by-
step procedures.

This approach encourages definition of reusable components.
In fact, program components can easily be parameterized to create
general-purpose components that can be tailored to specific
applications when needed. Reliability and reusability are
further enhanced by the fact that functions have no side-effects
and, hence, can cause no hidden changes (i.e., surprises) in the
state of a computation.

Background

In his 1977 Turing Award Lecture [1l], John Backus introduced
some of the radically new ideas of functional programming. He
presented two very clear cases against conventional programming
techniques. First, he argued that it is extremely difficult to
reason about the mathematical and logical properties of con-
ventional programs. This is because conventional languages
typically do not follow simple laws of algebraic equivalence or
transformation. For example, identical code segments may produce
very different results when executed at different times or in
different parts of a program. It becomes very difficult, there-
fore, to build larger programs from smaller components because

fundamental principles such as substitution cannot be relied
upon.

Backus's second point was that the conventional concept of
controlling a machine's actions is completely out of keeping with
modern developments in highly parallel non-von Neumann computer
architecture. The step-by-step control imposed by conventional
programs can easily thwart the use of available parallelism in
these advanced machines. At best, extra compile-time analysis is
required to determine when sequential commands can be performed
in parallel.

In a 1979 paper [2], David Turner described a new imple-
mentation technique for functional languages based on theoretical
work done in the 1930's by Haskell Curry [3)]. Curry developed
what he called the Combinatory Logic and showed it to be equiv-
alent to Church's Lambda Calculus. (The Lambda Calculus was
developedat about the same timeandiswell known as a theory of
computation and as the basis for LISP.) Turner showed that a
modern implementation of Curry's theory had several advantages
over existing techniques for interpreting functional programs. A

s R A N W I

“\-.-.
o, xﬂ&;&i 5ga‘Aup

‘,.

RS XY

s,;]
pJ



) number of functional languages, including Ernest, have been
implemented based on Turner's approach.

R General Concepts

,Q The basic components of functional programs are expressions
‘t and functions. This contrasts with conventional languages where
iﬁ the basic components are statements and procedures.

R The use of expressions for arithmetic and logical computa-
Ky tions is well established in conventional high-level programming
) languages. Indeed, the introduction of expressions in high-level
W languages has been a key factor in increasing software reliabili-
oﬁ ty and programmer productivity. It is common practice to let

compilers handle low-level details such as register allocation,
. temporary storage for intermediate results, and generating the
L actual processing steps necessary to evaluate expressions.

At the next level above expressions, however, traditional
high-level languages, including Pascal and Ada, revert to step-
v by-step statements or commands which operate on individual data
< items. The same difficulties that hinder assembly language
programming make larger Pascal and Ada programs time-consuming to
develop and difficult to modify.

Functional programming extends the use of expressions to 3
create and manipulate functions the way conventional languages -
treat numeric and other data. The principal extension is the .
addition of function-forming operations. Mathematicians call
T these function-forming operations functionals, which is where we
T derive the term functional programming. Function-forming opera- §
o tions replace conventional program structures such as assignment
statements, conditional statements, loops, and procedure calls. 3

3 -
lr v
-

fy ¥y

"2

The correspondence between arithmetic and functional expres-
sions is illustrated in Figure 1, which shows the translation of

e
r

X two expressions into procedural code. The first expression is a kﬁ
>~ simple arithmetic formula which represents a numeric value that [
* can be computed when values for A, B, and C are given. The LJ
- translation of this expression into assembler code is shown on S
- the right. )
. The second example is a functional expression which is i*
o equivalent to the Pascal code shown on the right. The symbol "o" "
v represents function composition, which is probably the most E

] familiar function-forming operation. "Map" is another function- 3
s forming operation which provides a common looping mechanism .7-
o similar to the Pascal "while" loop in this example. ("Map" is 7=
s further described in Section 2.) ﬁia
-t "
i The relative simplicitiy of the expressions on the left, § 4
© compared to the more complicated statements on the right can;pw
) easily be seen. Note that the arithmetic expression can befgg
oY understood without simulating its evaluation. The same is true.;xn
EhY
ot
N ]
iLn, 2 Wy
. 3
0\ RIS
388 A
-I R . .I\ -
< SR "#; :,:-’\:_'\" .\‘"jﬂ' '\‘«.‘;s":,-"\.;.;--':,\j,.:;x_’;-.';-."\::\::—.jnf-.f e e NI \_';x"\;\' N aA e

Al o



Arithmetic Expression
A *B + SIN( C )

Functional Expression
map( £ o g )

- — ———— —————— — — ——— ———— ————— - ———— —————— —

Assembler Code

L 2,A
M 2,B
LA 1l,C
BALR 15,SIN
A 2,0

Pascal_Code

read(x);

while not eof do begin
write( f(g(x)) );
read(x)
end

Figure 1. Procedural Code

—— e — ——— T T —— ————

Expressions vs.

for functional expressions once the notation and function-forming
operations become familiar. This makes verifying the correctness

of functional programs much easier than checking step-by-step
procedural code.

The same kind of argument can be made for the relative ease

. of modifying functional programs. Changes in arithmetic expres-
Ny sions in conventional high-level languages can be made without
considering their impact on register allocation or storage for
intermediate results. Changes in functional programs can be made

[0 without considering their impact on local variable declarations

thdy or the restructuring of step-by-step operations. Hence, rather

hieh sweeping changes can be made with high confidence when they are
requi red.

A T TR o p e e a2
N A I :’3‘:,5"323‘.

R RO AR TR AR A v 1



B T Y N s -

Nl

R el Sl

This section introduces the syntax and features of Ernest.
The terminology and examples in this discussion assume the reader
is familiar with conventional high-level languages such as Pascal
and Ada. Ernest is presented in a bottom-up fashion, starting
with the simplest components and working up to complete programs.
A BNF grammar for Ernest is included in Appendix A.

Identifiers, Symbols, and Literals

Identifiers are used to designate constant values, func-
tions, and function parameters. They follow the usual rules of
beginning with a letter, which may be followed by additional
letters, digits, and underscores. Differences in upper- and
lower-case letters are ignored, so that "IEEE" and "ieee", for
example, represent the same object. Ernest reserves the foll ow-
ing identifiers for expression delimiters, built-in functions,
and predefined literal values:

and fal se mod true
define if o where
el se input then undef ined

The following special symbols are used in expressions:

" & ' ( ) * + ’
- - /T /= ;
<= = > >= [ ] I
The symbol "--" begins a comment, which then extends to the end

of the line. The functions of other symbols are described in the
sections below.

Conventional notation is used for literal integer and string
val ues. Single quotes (apostrophes) surround strings. Literal
values for sequences and tuples are enclosed in angle brackets

("<" and ">") and separated by commas. An example tuple value
is:

< 'Ernest', <'July',1986>, true >

Arithmetic and Logical Expressions

Every attempt has been made to make Ernest's arithmetic and
logical expressions as "ordinary" as possible, so that expres-
sions actually mean what they intuitively appear to mean. The
precedence of operators, in decreasing order, by category, is
shown in Figure 2. As always, parentheses can be used to over-

P ATt 7 . B 2 Sl D e AR




P e a
LA

" 8 = 44
LA
"-'l’_‘l‘;l'.a't

AR
“n
o

3
i
N ,,l‘

- an g 3 (e gie ot ik odh il o & 8 A g B S A aud Mad bei (b dak o aibeine i S 4 i daadh bl s b ol gl hall

ride the precedence of operators.

Function applications are also ordinary looking. They con-
sist of a function name followed by arguments in parentheses and
separated by commas, as in

gcd( 123, 456 )

Conditional Expressions

Ernest supports conditional processing in the form of if-
then-else expressions similar to those in Algol. (Somehow these
useful expressions disappeared in Pascal and Ada.) They have the
form:

if condition then result_1l else result_2

—— ————— ——— — — —— —————— —— —— — — T ——— —_— —————— ——— T ——— —— T —. > —— — . — ——— T ——

- Arithmetic negation (unary prefix)
- Logical complement (not)

* Multiplication (binary infix)
/ Division

mod Modulo (remainder)

+ Addition
- Subtraction

Less than

Less than or equal
Equal

Not equal

Greater than

Greater than or equal

VV}II/J/\

& Logical conjunction (and)

| Logical disjunction (or)

: Sequence construction (cons)
Sequence concatenation

Figure 2. Precedence of Operators

——— —————— —— ————————— - —— —— —— — _— " ———— W — T —————— - —— Y —————— T ——— ——— —— ——

e T ={ -' 7o 1)
,“i,' 1, 800,Y ;‘J ?l“ :Q?h.."‘.'n‘,.hl..o..' Ny

I

L

X M-FAPrL ) | DOEEARE

-,
(s

s, .
2;"“‘#?




The "condition" can be any Boolean expression; "result_1"
and "result_2" can be arbitrary expressions. The value of
"result_1" is returned if the condition is true, and the value of
"result_2" is returned if the condition is false. Expressions
o must always be given for both "then" and "else" results in a
: conditional expression. An example conditional expression is:

: .’-“'{‘J"’dé} "o

Ih if x >= 0 then x else -x

g

K Sequences, Streams, Strings, and Tuples

iy

52 Sequences, streams, strings, and tuples are all almost the

ﬁk same things. They are all ordered collections of elements. The 1
i terms "sequence” and "stream" (and sometimes "list") are used !
v interchangeably to indicate collections of objects of the same

" type. Strings are sequences of characters, and are so common X
'Y they have their own syntax for literal values. Tuples are \
R collections of objects of mixed type. Sequences and tuples are ]
r usually thought of as finite objects, whereas streams (e.g., I/0 {
o streams) are usually thought of as infinite (or at least very A
Sl long) objects. Ernest makes no distinction -- except that

infinite streams can not be sorted or reversed, etc., because
these operations require access to all the components of the '

i;. sequence. If processing an infinite stream requires access to )
b only a finite segment at any time, Ernest can handle it quite I
5 easily. ;

Primitive operations on sequences include "head", "tail",

N "“", and ":". "Head" is the function that returns the first \
E: element of a sequence. "Tail" returns the sequence that remains i
<4 after removing the head. The infix operator ":" (pronounced '
:2: "cons") constructs a new sequence with its left-hand argument at '

the head and its right-hand argument for a tail. The infix
operator "'" concatenates two sequences. These operations have

:ﬁc the following properties: ("<>" represents the empty sequence) )

AN !

.f M

.;:- head( <> ) = undefined -- (run-time error) !

:{? tail( <> ) = wundefined -- (run-time error) :

head( x:t ) = «x

‘l'::.*:. tail( x:t ) = t !

*:}-;:; head( s"t ) = if s=<> then head(t) else head(s) J

v tail ( 8"t ) = if s=<> then tail(t) else tail(s)"t |

fvgj Literal values for sequences and tuples have the following

oo definitions. Note that ":" is right associative, as indicated by

Ao the parentheses. ;

)

AN <x > = x 1 O 4

,,.-s;’,« <X, Yo 2> = X :Yy 12 : < :

.rz:_-: = x : (y : (z : <)) .
d

:l" }‘ (]

angh 2 )

f.

l‘ - ‘e 9 L'l ..l".l \l fhl \1 \'.'.‘\.-I.' ..l DRI TR T L e R --.\' ..-. ! - \
-, *.f.-}f_&.{&’:;‘f:.ﬁ SRR RN




WWWW Y L LN LN T . NV LWL T AR Py TS S YT STV SATETRETRTLTET R TN TRTRTRTEN
. \ )

o
o Function Definitions
T
Q I:: There are two forms of function definition in Ernest: con-
ventional definitions which describe a function in terms of
i operations on a set of formal parameters, and function-level
By definitions which construct functions using function-forming
K operations. The basic form of a conventional definition is:
%‘:,',: function_name ( parameter_list ) = expression
e where "function_name" is an identifier, "parameter_list" is a
el list of parameters separated by commas, and "expression" is an
:. arbitrary Ernest expression. For example, the absolute value
it function can be defined as
v abs(x) = if x>=0 then x else -x
,. which shows how to test a hypothetical input value (represented
N} by x) and prepare the result.
xﬁ Functions may be recursive. Recursion, however, is not the
*'-"w only (nor the best) looping mechanism in Ernest. Alternative
b techniques using function-forming operations are described below.
&
ﬁ-.'j Subordinate Definitions. Complex functions can often be
2 simpl ified by introducing local supporting functions to handle
5 lower-level details and by defining local "variables" for common
- sube xpressions. (Variables in functional programs are not
storage locations, they are merely identifiers for expressions.)
g Ernest provides a "where" clause for defining local functions and
,{Iu{ variables within a function definition. The complete form for
O function definitions is
J\,’_'
function_name ( parameter_list ) = expression
., where definition_1
iy
K and definition_2
;. \ L N )
A N
A and definition_n
o
‘3’::.2 "Where" and "and" clauses are optional. The following
o example shows the use of a "where" clause to define a local
_‘- function to help in generating a stream of pseudo-random numbers.
random(n) = n : random( next (n) )
“
Yoo where next(n) = (31*n + 378) mod 1013
3
0 This function generates an infinite sequence of numbers that
R range between 0 and 1012. The parameter "n" serves as the
- initial seed for the random sequence. Successive values are 3
3 S produced by the function "next" which computes a simple product- i
+heN remainder formula. .
AN
P 5
‘W 8 2
¥

. o O R .t ) PR S S PR
. »‘..\‘\. Rt e -?.__." 04 _\'-_r. XLty .A_‘? Vs‘\
R . A L) » » " ) »! £ -



—r e T em VEm AR TIW TN T W TTWYTES TV W [ s Bt Tt At £ a2 A 2%s 8% S1a ale atecary afa 0ls LA AT ELv £oi - Ba- Atous bk oRh ol -ooiall ot ot B of b a8 o2 atd aif ot o & a4 o -Adh Aol daf A8 1

Subordinate functions may be mutually recursive and may
invoke the function they help define.

Nested Definitions. "Where" clauses may be nested. This
mechanism is required for structuring large programs. However,
it introduces two minor complications. The first is that local
functions and variables may reuse identifiers that have already
been declared. The search for the definition of an identifier
that appears in an expression proceeds as follows:

A e R A~ S -ERAERACRTY XX

1. Look for it as the name of a subordinate function or
variable;

2. If that fails, look for it as a parameter of the current
function;

[ J o o iR SR SR

3. Otherwise, it must be defined at a higher level, so move
up to the next level and repeat the search;

L
-
5

4. End the search when you have looked through the lists of
predefined values and built-in operations given in
Appendix C.

One of the consequences of these rules is that subordinate
functions may be mutually recursive.
The second complication in nested defiritions is due to the

ambiguity as to which "where" the "and" clause belongs in the two
possible patterns below.

where f(x) = ... where f(x) = ...
where g(y) = ... where g(y) = ...
and h(z) = ... and h(z) = ...

Ernest ignors the indentation and assumes the left-hand
interpretation; i.e., that "g" and "h" support the definition of
£, To get the right-hand interpretation, Ernest allows a
nested "where" clause to be terminated by a semicolon, as shown
bel ow.

where £f(x) = ...
where g(y) = ... -- ends definition of "f"

and h(z) = ...

Patterns. When functions take sequences or tuples as argu-
ments, it is often desirable to name the components of these
structures so they can be used in the defining expressions. The




following patterns for structured parameters are recognized:

parm_1 : parm_2 -~ for non-empty sequences, and
< parameter_list > -- for fixed-length tuples

"Parm_1" and "parm_2" are identifiers or patterns and
"parm_list" is a list of identifiers or patterns separated by
commas. An example use of this is in the definition of a func-
tion to compute the magnitude of vectors represented by <x,y>
coordinate pairs.

magnitude ( <x,y> ) = sqrt( x*x + y*y )

Patterns can also be used in "where" clauses to define
structured variables. A common use of this is to define func-
tions on sequences that first test for the empty sequence and

then, on non-empty sequences, operate on the head and tail com-
ponents. An example of this is:

sum(s) = if s=<> then 0 else x + sum(t)
where x:t = s

Here, "x" and "t" serve as convenient names for "head(s)"
and "tail(s)", respectively. Note also that "x" and "t" are un-
defined if the sequence "s" is empty.

Function-Forming Operations

Function-forming operations are functions or expressions
that yield functions as results. Probably the most familiar
example of this type of operation is function composition, which
is a primitive operation in Ernest. The symbol "o" can be used
to compose functions as in the following definition:

safe_sqrt = sqrt o abs
This definition is equivalent to
safe_sqrt(x) = sqrt( abs(x) )

In fact, identical object code is generated for both definjitions.
The difference between them is significant, however. The first
definition is a very simple example of a much more powerful form
of programming which directly manipulates the component func-
tions. This is functional programming! The second definition is
weaker in the sense that it must introduce an extraneous "dummy"
parameter and describe the function in terms of operations on
data.

One of the big advantages of function-forming operations and /~
function-level expressions is that complex functions can often be

10

LA AN o 4'

-, e - NN P e R T GNP P ."_.- - -_.- R R
S \'-IJ'-('" e .

-._\'_-.'._._\. :.."-\. \"x’\



Yo
.
o
‘o

.‘l:.\“

R 4
[ 4

"~
ﬂl‘v Tl AN

-
) { jC ;}:—'.;’f:’#v"tf
".)" i"h" ex

AT OV

LAr- S

>
[
"\-’
P
4ty
o

"
;-
& a
y

+

22

o
e
e n

i
I
£

3
o

.
JOAS

vl
.'l'\; \n \l o

..
NN
<

(NI

N

'~

defined more easily by such operations than by conventional
definitions. For instance, many functions which require recur-
sive conventional definitions can be constructed by functional

expressions without explicit use of recursion. Several examples
of such functions are presented below and in Section 3.

Partial Application. Any function with more than one argu-
ment can be considered a function-forming operation in Ernest.
The reason for this is that functions are evaluated by applying
them to one argument at a time, from left to right. The result
of consuming the first (left-most) argument is a new function
which is then applied to the next argument and so on, until all
the arguments are consumed.

The most common use of this language characteristic is to
"partially"” apply a function to its first few arguments, leaving
later arguments uncommitted. A simple example of this is the
successor function "succ" which adds 1 to its argument:

succ = "+"( 1)
This function fixes one of the arquments for the addition opera-
tion by partial application and leaves the second argument to be

filled in later. An equivalent conventional definition for this
function is

succ{ x ) = x + 1

Built-In FPunction-Forming Operations. The key to the
utility of partial application is the wide variety of functions
that can be constructed using a small number of function-forming
operations. Several of these operations that have found their
way into common use have been included as built-in functions in
Ernest. These functions are briefly described in Figure 3. The
figure shows several examples of iterative operations that can be
described without explicit use of recursion. Actually, the
recursion is hidden within the definitions of these function-

forming operations. For example, the definition of "map" in
Ernest is

map( £, s ) = if s=<> then <
else f(x):map(f,t)
where x:t = s

Further examples of the use of these operations are present-
ed in Section 3.

11

N L.
.......




3 A
2 1
,P :
LN

RE

]

T T

%_

o

' Generate: applies a function repeatedly to produce an infinite

" sequence.

f )

:3 generate( £, x ) = < x, f£(x), f(£(x)), <o D

]

s An example where "generate" could be used is in

":i random = generate( next )

B2 where next(m) = (31*m + 378) mod 1013

5

()

"Random" is a function which, when applied to an integer argu-
. ment, produces an infinite sequence of pseudo-random numbers.
2 "Random" passes on its argument as the second argument to
o "generate"; i.e.,

5 random( n ) = generate( next, n )

Map: applies a function to each element of a sequence, producing
'5C a new sequence.

W map( £, <a,b;cjeee> ) = <Kf(Aa),f(b),f(C)seeed

q~, " s " ) .

. Mapping” is a common operation on streams. For example, a
3 function that converts all the upper-case letters in a character
- stream to lower case is

' lowercase = map( cvt )

o

s where cvt(ch) = if ch<'A' | ch>'Z' then ch

o else chr(ord(ch)+32)

o

W

fq Filter: selects the elements of a sequence that satisfy a given
; predicate. For example,

Lo

l; filter( odd, <3,8,5,2,7> )

S where odd(n) = nmod 2 =1

IS

. produces the sequence <3,5,7>.

'y Figure 3. Ernest Function-Forming Operations

a:S -----------------------------------------------------------------
't

! 12

;';

»

!‘ - . mc A a e AR e A T A et N e s, et A s

R G N e DR O G S B LR RN R




-

-
XAS

~

——— — T —— e ——— A —— Y ——— ———— Y — " ——————— — — —— —— — —— —— —— — T — —— " — —— ——— — ————

Reduce: accumulates the result of applying a binary function
"between" sequence elements. For example,

reduce( "+", 0, <a,b,¢c;...> ) = O0+atb+ct...

This is particularly useful as a function-forming operation. A
simple example is the following function definition:

sum = reduce( "+", 0 )

Construct: applies a sequence of functions to a common argument,
producing a tuple of results. An example of this is:

construct (<f,g,h,...>,x)

<f(x),g(x),h(x),ee.>

This is such a useful function-forming operation it has been

given its own special syntax. Square brackets around a list of
functions have the following meaning:

[ £, g, h, «.. ] = construct( <f,g,hye..> )

Scan: applies a binary function between sequence elements similar

to "reduce", but produces the sequence of all the partial
results. For example,

scan( "+"’ 0' <a,b,Creee ) =
< 0, 0O+a, O+a+b, O+a+b+c, ... >

This function-forming operation is a very general one. In fact,
both "map" and "reduce"” can be defined in terms of it. For

example, the last element produced by "scan" is the value pro-
duced by "reduce.®" Hence,

reduce (f,a) = last o scan(f,a)

where last(x:t) = if t=<> then x
else last (t)

"Last" returns the last element in a non-empty sequence; "o" is
the infix operator for function composition.

Figure 3.

Ernest Function-Forming Operations (cont.)




Input and Output

The standard input character stream (e.g., from the user's
keyboard) is available through the predefined stream named
"input.” All output is directed to the standard output stream.

Program Structure

Complete programs are formed in Ernest by a series of (zero
or more) function definitions, followed by an expression. Func-
tions defined at the program level are global in scope and may be
e compiled separately. The reserved word "define"™ is used to
N introduce each global function definition. The order of global
function definitions in a program is not significant. The form
of a complete program, therefore, is

define definition_1

E -{',‘y e s o
define definition_m

expression

14

23 e gy e e
% 1":5,,-&.; Y ~ S T B e A S



- .. v":‘-‘
NP

R
b s

,;-.A

3. EXAMPLE NNCI‘IONAL PROG RAMS

This section presents a number of simple functional programs
which can be run on our system and are included on the distribu-
tion diskette. The examples range from simple numerical computa-
tions to string manipulation and sorting. A complete, executable
specification is given for each program.

At the beginning of each program we define general-purpose
utility functions and function-forming operations. Special-
purpose functions which are unique to the problem are specified
in local "where" clauses. This style of programming is intended
to promote the development of reusable global function defini-
tions.

Numerical Programs

The following examples illustrate simple numerical computa-
tions. They include computing the greatest common divisor of two

numbers, generating random and prime numbers, and computing the
dot product of two vectors.

Greatest Common Divisor. The greatest common divisor of two
numbers is the largest value that divides both numbers evenly.
Euclid's algorithm for finding the "gcd" of two positive integers
is used in the first version of this program:

-- Compute the greatest common divisor
gcd( 105, 45 )

where gcd{a,b) = if a=b then a
else if a>b then gcd(a-b,Db)
else gcd(a,b-a)

Pseudo-Random Numbers. This program is virtually identical
to the example application of "generate" discussed on page 12.
"List" inserts commas and spaces between sequence elements for
readability.

define 1list(s) = '<' : if s=<> then <'>">
else head(s) : 1lst(tail(s))

where 1lst(s) = if s=<> then <'>'>
else ',' : ' ' : head(s)
: 1st(tail(s))

T -~ \x_.x\’s."\"u'\"ss‘“-." \-\.\-.
o AR 2 olet<ta _\.{ Ity

OO CHCERO N MO TN

1



'\; \-(\"\-:’; 1'.‘-

-- Generate an infinite sequence of random numbers

list( random(123) )
where random = generate( next )

where next(n) = (31*n + 378) mod 1013

Prime Numbers. The objective of this program is to generate
the sequence of all the prime numbers. Several functional
solutions to this problem have been described in the literature
(cf., [4] and [5]). The one presented here produces the longest
sequence before running out of storage space.

define 1list(s) = '<' : if s=<> then <'>'>
else head(s) : lst(tail(s))

where 1lst(s) = if s=<> then <'>'>
else ',' : ' ' : head(s)
: 1st(tail(s))

-- Generate the sequence of all the prime numbers

list( primes )

where primes = 2 : genprimes(3)

where genprimes(n) = if divisible(n)
then genprimes(n+1)
else n : genprimes (n+2)

where divisible(n) = dvbl(n,primes)
where dvbl(n,x:t) = if n mod x = 0 then true

else if x*x > n then false
else dvbl (n,t)

"Genprimes" generates the sequence of prime numbers starting
with the first prime that is greater than or equal to its arqu-
ment. "Divisible" tests its argument to see if it is divisible

by any previously generated prime.

Vector Dot Product. The dot product of two vectors is

defined as the sum of the pairwise products of vector elements.

define pairmwise(f,a,b) = if a=<> & b=<> then <>
else f(al,bl) :

paiwtwise (f,an,bn) sj

N

where al:an = a and bl:bn =D ;xg

%

(\-

23

16 s

"

. Y l'd e " P AP AR Y AN e Sl S '#'.\'ﬁ.:
EL A e e m N " DRI R '*'.‘-\' -.\'4 ~ 4 - '\_""'. '.q."--' . -,'.-_ 4. - -
- ‘,."”\: :\,t e AN A S A S s AR S




v " w W W W W T W T T WO Y P I P rueT T O O Y O TN T O PO I r T WO T PO rOvr For n—v\.-ﬂw

{

§ define sum = reduce("+",0)

-- Compute the dot product of two vectors |

N dotprod( <1,2,3>, <4,5,6> )

-~ |
: where dotprod(a,b) = sum( pairwise("*",a,b) ) !
R
el "Pairwise" applies a function to the elements of two input

7. sequences, taking one value from each sequence at a time and
';' producing a new sequence as a result. That is,

A0

,l #. mimise( f' <al'a2'ooo>' <bl'b2'ooo> ) =
L\ < f(al'bl)' f(az,bz)' * o0 >

LR LN i
-‘..',.-. ‘
Y

. The definition of "sum" in terms of “"reduce" was discussed
: on page 13.

. X The heart of this program is the expression |
sum( pairwise("*",a,b) )
which reads almost exactly like the English definition of dot

product. This correspondence between definitions is another
reason why function-level programming is easier, faster, and more

}_Q: reliable than conventional technigues.
Ry

YA Y
K-

AR .

Rt Non-Numerical Programs

The following examples deal primarily with functions that

‘.i':‘ transform or rearrange sequences. They include finding the
"\\."-':’4' length of a sequence, reversing and appending elements to
s sequences, counting the number of words in text, and sorting.
@ %

‘ )

LN Length. One of the simplest operations on sequences is to
find their length. A non-recursive definition can be formulated
o using the function-forming operation "reduce":
NS
:ﬂ;-t_-r'-I-j: define length = reduce (count,0)

.q\ \ 5

where count(n,x) = n+l

e -- Find the length of a sequence

e N

s

length( 'How now brown cow?' )




Xy

. U e 2
RPN Y -

o e e
¥ -,

»

TP Ds R,

w2

s

Is

..........

"Count" simply increments a counter for each element in the
input sequence.

Reverse and Append. The following functions reverse the
elements in a sequence and append a new element at the end of a
sequence.

define 1list(s) = '<' : if s=<> then <'>">
else head(s) : lst(tail(s))

where 1lst(s) = if s=<> then <'>'>
else ',' : ' ' : head(s)
: lst(tail(s))

define reverse = reduce(snoc,<>)

where snoc(s,x) = x:s

~

define append(a,s) = s <a>

-- Example sequence transformations (contrived)

list( < reverse('elloH'),
'how are ' ” append('?','you') > )

"Reverse™ is defined using "reduce." The function "snoc” is
the same as "cons" with its argquments reversed. "Append" is
defined by forming a sequence containing the new element and
concatenating it to the end of the original sequence.

Word Count. The purpose of this program is to count the
number of words (i.e., contiguous sequence of non-blank char-
acters) in a text string.

To simpl ify this problem, we have split it into two basic
steps. First, the input string is transformed into a string
containing asterisks, dashes, and blanks. Asterisks replace the
first letters of words, dashes replace subsequent letters, and
blanks remain blanks. That is, the input is first transformed
into the string:

TR e K Ko Rt
('"How now brown cow?')

The second step is simply to count the asterisks.

define length = reduce(count,0)

where count{n,x) = n+l

18

PR PRI E PO o . PR
» ™ :f-' ..*"-__\'r't'\*'.-- \._\ ‘\-. > L

Ty
e
-

nJ
72
2

"

e 3
X

-

- C\J



r"mmmmm‘vwv" Fwrwr T TN N Ao et h L A A

Count the number of words in a text string

wordcount( 'How now brown cow?' )

O where wordcount = length o filter (equal('*'))
ii o scan(markword,' ')
) where markword(a,b) = if b=' ' then ' '
« else if a=' ' then '*!
. else '-!
o
;Qj "Wordcount" is def ined by the composition of three functions
D which form a pipeline of sequence transformation. The first
e transformation is the tricky one. All it requires, though, is
. the observation that the beginning of a word can be distinguished
d by looking between successive characters in a string. A new word
Lih! starts when a blank is followed by a non-blank. This is a per-
3&, fect scenario for "scan"; and once it is recognized, the problem
ag; is reduced to defining the function "markword.”
’i)
s & The second transformation is to screen out all the asterisks
N so they can be counted. "Equal('*')" is a function which tests a
.55 single character to see if it is an asterisk.
wa

Filtering with
S this function produces a subsequence of the input containing all
s
&

S the asterisks. The length of this subsequence, therefore, equals
ik the number of words in the original text string.
“vg; Sorting. No description of a programming language is com-
T plete without a discussion of sorting. This program illustrates
$:Q4 the technique of inserting elements, one at a time, into a new
1Ny sequence in the desired order.
[\
o define list(s) = '<' : if s=<> then <'>'>
el else head(s) : lst(tail(s))
aghat .
\*&“, where 1st(s) = if s=<> then <'>'>
DG else ',' ¢ ' ' : head(s)
, . : 1st(tail(s))
2ol
‘§:§v define sort(order) = reduce( insert (order), <> )
‘P:q" .
tﬁid where insert(p,s,x) = if s=<> then <x>
Bt else if p(x,y) then x:s
"y else head(s):insert(p,t, x)
Fe l‘k?‘
e ret,
52:)-}32. where y:t = s
"'*‘.f-‘.. ~
h t*z \
Ly T -=- Sort a sequence of numbers in ascending order
N e list( sort (ascending,<3,-8,5,-2,7>) )
$“¢?:?:'
RN
e
ol 19
e
t‘ 4
?‘:o' Wi o o s
"f:fuf:'nfo'.-'O:n".g',\‘.:. :i"t.'h:’t,: WX e radipisimtanatia

e e e e e m - e et e e
e T AT AT g S A S S S U AT NN
(R AR NN A RGN LGN R (o x A A Za et .




A
AES

L

2T eSS
’5{\}.}.,&_"-

'

! '-{‘h

J'.'J'-‘{—' '-‘r‘-}ﬂ 4 ‘-(‘4"-')1 " '..- .-,A SR -*- "
'.)\"".h?:'r.h\ﬂ":}fjt".a:'a b %o ,';.A-}.A'm'm.-i'ablmm}

where ascending(x,y) = x <=y

~- descending(x,y) = X >=y

"Insert" searches an already sorted sequence and inserts a
new element in its proper position. Ascending and descending
sorts can be accompl ished by supplying the function used to
decide where an element belongs in the sorted sequence.

"Reduce" is used to orchestrate the insertion of each

element in the input sequence into a growing partial sequence of
sorted elements. When the final element has been inserted,

"reduce" returns the complete sorted sequence.

20

.

T O
,"h"(’- \'-.\h.,ql‘. Ly i

e

N IR
e e

.

A
. .
Py SN

7
LA

A

4

Y % ¥} .
R W

'l
‘.{




baos 4. PROGRAMMING IN ERNEST

\." ~~~~~~~~~~~~ ~ o ay ay A > ap N o o -~ ow ny as o v - o

o

!"

s In this section we offer some general guidelines which we

e have found useful in developing functional programs. While we

§$. feel these guidelines are useful, we also think they can be

Lo expanded and improved. Hence, we are not yet ready to promote

j;& them as a complete methodol ogy.

WA

a‘" Top-Down Design

;¥§§ A top~down design approach is essential to breaking problems

e into manageable pieces. Separate the problem's functional,

pOUON operational, and performance requirements. One of the problems

of conventional programming techniques is that function, perform-

LA ance, and operations issues are typically all jumbled together.
»\5 Functional programming requires focusing on the program's
oy function.

oo

@Lf Identify the necessary program inputs and the required
i program outputs, then characterize the program as a function from

1 inputs to outputs. If several outputs are to be produced,
?ﬁha consider each one to be the result of a separate function.

kﬁ;ﬁ Functional programming offers more flexibility in partition-
PR ing problems than conventional programming languages. One

example of this is illustrated in our solution of the word-count
problem on page 18. This program first transforms its entire
input stream, then filters out selected elements, and finally
counts what is left. Conventional programming techniques would
probably not have led to this solution. However, it is easy to
understand, it is easily verified, and it is just as efficient as
more conventional solutions.

Bottom-Up Implementation

We recommend a constructive, bottom-up approach to writing
programs. Simple functions can be quickly built and tested
before being incorporated into larger ones. Functions at any
level can be easily combined to form more complex functions.
They can also be taken apart just as easily to correct errors and
to form new functions. Conventional programming languages do not
have this flexibility because of the changes in program variable
declarations and initialization that would be required to match
the changes in functional organization.

Data Plow Diagrams

We have found data flow diagrams [6] to be extremely hel pful
in developing functional programs. They provide an intuitive
graphical representation of the construction of functions. The

s



@

?\

:t translation between data flow diagrams and program code 1is
f: relatively simple. This allows designs to be easily converted
» into executable programs. Similarly, programs can be easily

converted into data flow diagrams for verification and documenta-

- tion. We hope to provide tools to facilitate data flow program-
78 ming with the next release of our compiler.

,.ﬂl

2

i: Recursive Functions

& While Ernest fully supports recursive functions, most pro-
-, grammers (except for those with an affinity for quiche) have
-Q difficulty with recursion. Our recommendation is to avoid recur-
o sion where ever possible and use function-forming operations
e instead. Ernest's built-in function-forming operations cover a
: wide range of applications. For example, "reduce" can be used to
L sort numbers as well as sum them. As an added incentive, func-
: tions constructed using the built-in operators usually run faster
- than equivalent recursive functions.

o Function-Forming Operations

4

5 Try to match Ernest's function-forming operations to the
N structure of the problem. This may take some practice but it is
. the key to building functional programs. If a function-forming
3 operation can be used, then proceed to develop the lower-level

functions required to construct the solution.

We have found that developing new function-forming opera-
K- tions with the desired level of generality requires considerable
< analysis and, hence, must be accorded more respect than develop-
ing ordinary functions. This is because an effective function-
forming operation must abstract a general functional structure
. from the details of specific applications. An example of a well-
designed function-forming operation is "map." This operation can

R

-

o be used in many different applications because it is cleanly
", separated from the details of any individual program. Functional
Q programming provides powerful facilities for abstraction and,
ot when used correctly, yields simple solutions to complex problems.
" u

o

N

{'

}.

\J

;-

-

.,.

-

3

n

yO)

-

e,

\

. 22
-

: PRI ST SR P T SR BPAT TR JOAE B 4.«,‘4‘:&1\-"\ ..- AT T T s e ~ - - o VoAt N et e ~

AR R R R LR RINR .1 ST QO Rt R T S RSP
O R S ORI S A3 ) D8 Ot N A A I D 0 A N N N N N A I PO s



e LA aa Tateaa il Tak S op fo¥ Sag ~an oy o tol dos San aad o Soh ok tof st Bhoa e b ol £ A b A A 2 B e i i i o kA 8 c il el S St o

REFERENCES

Dy o > P o o > o P E> S O - o

l. Backus, J., "Can Programming be Liberated from the von
Neumann Style? A Functional Style and its Algebra of Pro-
grams", Comm. ACM, Vol. 21, No. 8, August 1979, pp. 613-641.

2. Turner, D., "A New Implementation Technique for Applicative

Languages", Software--Practice and Experience, Vol. 9, No. 1,
1979I ppo 31_49-

3. Curry, H.B., and R. Feys, Combinatory Logic, North-Holland,
Amsterdam, 1958.

4. Henderson, P., Functional Programming Application and Imple-
mentatjon, Prentice-Hall International, 1980.

S. Darlington, J., P. Henderson, and D. Turner (eds.), Func-

tional Programming and jts Applications, Cambridge Univ.
Press, 1982.

6. DeMarco, T., Structured Analysis apd System Specification,
Yourdon, Inc., New York, 1979.

L

8,

¥, ,
X

K" S

Reh &
B

f~ X
et 3
7
"
« = g

o
WA
'

2

Iy 4

* A .
.’ll‘l"

&

a
3y

LI

")
"’3 -
"”

e
%

DR TR e S ML IR (e e N 0 e e
e A e T ‘W& “\j
‘ .A.m.é?})&'.n'?‘:r',“.a‘-a\x\_n SN A AT .ﬁ\s



Appendix A. ERNEST BNF GRAMMAR

At > B PP B> > BT T Y PP O Y Ny D Sl PO WP N NP . D B D "t D D OOy S O -

In this appendix we present a BNF grammar for Ernest. Some
of the particular details of this meta-notation are:

o Literal symbols and reserved words are shown in guotes,
such as 'define', '(', ')', etc.
0 Square brackets enclose optional items; for example,
( Where_Clause ]
indicates that "where" clauses are optional.
o Braces enclose a repeated item, which may appear zero or
more times; for example,
{ ',' Parameter }
indicates that a parameter list may have an arbitrary
number of parameters separated by commas.
o Vertical bars separate alternative items, as in
Identifier | Structure
which indicates that parameters may be either simple

identifiers or structures.

o The terms "Character", "Identifier", "Number", and
"String" represent primitive lexical groups which are not
defined in this grammar.

The axiom for the grammar productions is the non-terminal
"Program"”.




Program 1:=

Definition 1:=

Parameter_List :

Parameter

Structure

Expression ::=

Simple_Expression

Application HH

Argument_List ::

Construction s:

Where_Clause s

Simple_Expression

= Identifier '(' Argument_List ")’

= '[' Argument_List ']'

Tuple te= 'O! |

Definition 1}
[ Where_Clause ]

{ 'define'
Expression

Identifier [ '(' Parameter_List '")' ]
'=' Expression [ Where_Clause ]

Structure '=' Expression

:= Parameter { ',' Parameter 1}

Identifier | Structure

Identifier { ':' Identifier 1}

'<' Parameter_List '>'

{ Infix Operator Simple_ Expression }

'if' Expression 'then' Expression
'else' Expression
::= Application | Character
l Construction | Identifier
| Number | String
| Tupl e | '('" Expression ')'

= Expression { ', Expression }

'<' Argument_List '>' i

= 'where' Definition { 'and' Definition }

26

~ -

l'..".\‘h '*l f Shataalin




-

R

[ ] 4,
. ) i, f‘
' ‘.v\'.} "-'h
TS "“b .

This append
predefined

Appendix B.

PRI S e L K L X O S

ix catalogs the reserved words,
functions in Ernest.

Reserved Words

and
define
div

el se
if

o

mod
then
where

Predefined Values

false
input

nil

true
undef ined

Boolean negative

the input (keyboard) charact
the empty sequence

Boolean affimative

~- the value with no definition

Prefix Operators

~

arithmetic negation
logical complement (not)

Infix Operators

+ * @
]

IV VIl AA e (N

—0 3 O
O -
Q<

fleS
S

L
S DRE S R4
M e w”

logical conjunction (and)
multiplication

addition

subtraction

division

not equal

sequence construction (cons)
less than

less than or equal

~- equal

greater than

greater than or equal
sequence concatenation
integer division

-- integer remainder
function composition
logical disjunction (or)

27

PREDEFINED FUNCTIONS

predef ined values,

separates subordinate definitions
introduces a global function definition
infix operator for integer division
separates part of a conditional expression
introduces a conditional expression

infix operator for function composition
infix operator for integer remainder
separates part of a conditional expression
introduces subordinate definitions

er stream

and



wr oY - Mo ol AL a4 As: an- Sad Jiad hast Ae:

------ L ans Aa B a ds 8.0 B8 Al ok A S B A Banda AR S s o bl aid ard ath st ath et stk il i J"W‘T

|

Predefined Punctions

add(x,y) -=- addition (x+y)

chr (n) -- numeric code to character conversion
cons(x,s) -- sequence construction (x:s)
construct (s,x) ~-- function construction

eager (£, x) -- forces eager evaluation of x

equal (x,y) -- test for equal values

filter(p,s) -~ subsequence extraction

generate(f,a) -- sequence generation

grtr(x,y) -- test for greater than (x>y)
grtreq(x,y) -- test for greater than or equal (x>=y)
head(s) -- first element of a sequence

less (x,y) -- test for less than (x<y)

lesseq(x,y) -- test for less than or equal (x<=y)
map(f,s) -- sequence mapping

mult(x,y) -- multiplication (x*y)

neg (x) -- numeric negative

not (x) -- logical negative

noteq{x,y) -~ test for inequality (x/=y)

ord(c) -- character to numeric code conversion
or (x,y) -- logical disjunction (xly)

reduce (£,a,s) -~ sequence reduction

scan(f,a,s) -- sequence scanning operation

sub(x,y) -- subtraction (x-y)

tail (s) -- sequence remainder




- il TR TR T 'D'r'xw:r'qu'.-—J"u'“)'—!—v*v_vv—vv-_v“r-v'—'~twr"—'w'ﬂ-~-—v—u--1
&

1

P
&

Appendix C. FUNCTION-FORMING OPERATIONS

PP ED S A > B> P S B > > O - T B D S EY -y P S EP G B DD B P> T S, D O B S By S OGO s S s S

!
3 In this appendix we present applicative definitions for the
built-in function-forming operations described in Section 2.6. \
; As is typical in interpreters, the built-in operations are much {
o faster than the equivalent functions described here. 1In fact,
L functions defined using these building blocks are often faster j
' than recursive applicative functions.
» :1'
iy Construct
rfl define construct(s,x) = if s=<> then <
else £(x) : construct(t,x)
0 where f:t = s
o0
f}; applies a tuple of functions to a common argument, producing the
$§% tuple of results: < fl(x), £2(x), ... >.
f;;T Filter
f;tf define filter(p,s) = if s=<> then < |
TN else if p(x) then x:y 1
else y 1
P where y = filter(p,t)
._3.._;
e and x:t = s
o
s selects the elements of a sequence that satisfy a given predi-
;)f¥ cate.
Bade
,Sﬁi
AN Generate
? r.{.*ni'\
- define generate(f,x) = x : generate(f,f(x))
;3;f3 applies a function repeatedly to produce the infinite sequence:
5&??; < x, £(x), £(E£(x)), «cc >.
- ‘,'O
'.i ‘J'.:ﬁ'
T
Map
define map(f,s) = if s=<> then <
ﬁ.‘ else f(x) : map(f,t)
R where x:t = s

applies a function to each element of a sequence, producing the
sequence: < £(x1), £(x2), «es >.

29

- e

S Ay % e,

S R L R N e T e L Te T i A TS TR TS, Y
¢' o ._'-.ﬁ* ._J_.)-. r. > e ‘,r -'\ .'("vr.’ .‘Io“

LALLM > Bhid B Il B 2L i < D il B 0 M4 b

92"



TPV T T r laa dlae Ade Ada e 4 T T T T vy - T~

Reduce

define reduce(f,a,s) = if s=<> then a
else reduce(f,f(a,x).,t)

where x:t = s

accumulates the result of applying a binary function "between"
sequence elements.

Scan

define scan(f,a,s) = a : if s=<> then <
else scan(f,f(a,x),t)

where x:t = s

applies a binary function "between" sequence elements and pro-
duces a sequence of all the partial results.




sofefeldga: <o

»

s, ) S al

-

Sre,

*

Y,

AL
‘.&’

2,

FN A A

Appendix D. COMPILER OPERATION

D B AP " B B PP . - B - oy D Ty " NP D N N Y S W N P D O

This appendix describes how to use Oliver, the compiler, and
Sherbert, the run-time interpreter, to compile and run functional
programs.

Oliver, the Compiler

Oliver translates high-level function specifications into a
low-level code which is understood by the run-time interpreter.
There are two parts to Oliver: Oliverl, which parses Ernest
source code and produces an intermediate abstract syntax tree,
and Oliver2, which processes the abstract syntax tree and gen-
erates low-level object code. The two commands necessary to
compile an Ernest program called "example" are:

A> oliverl example.fun example.ast
A> oliver2 example.ast example. hbc

The file extension "fun" is self-explanatory; "ast" stands
for the abstract syntax tree; and "hbc" forms the initials of the

developer of the theory behind the low-level code, Haskel B.
Curry.

Both Oliverl and Oliver2 read an additional file called
OLIVERI.TBL and OLIVER2.TBL, respectively, which contains their
translation tables. These files must reside in the default disk
directory so the programs can find them.

Sherbert, the Interpreter

Sherbert reads and executes the low-level object code pro-
duced by the compiler. The command necessary to run our example
functional program is:

A> sherbert example.hbc

Application programs can receive input from the keyboard.
Sherbert reads this data and passes it to the applicat‘on program
through a predef ined character string named "input." Examples of
such programs are given in Section 3. Keyboard input can be
terminated by typing a control-Z followed by a carriage return.
All of Sherbert's output presently goes to the user's screen.

The batch command file included on the distribution diskette

will compile a functional program and then execute the object
code. It can be invoked by:

A> fungo example

31

N T N O W Ay
oA (-1{"- -'.‘.\"f‘ XGOS -\; N.‘u.“ ._‘




- -

- v~

[y
PR

M AR Gaa Shh b:a b f b i g d bbbl S and gl aoc e ag add aih Bied aled ata ach A & A-EA A A anl S Sadh ook Bal Bk sall el At ol

Appendix E. ERROR MESSAGES

- G > B I N A - OS Y . P EE D Ot O D OD N> NP By OO By - >

In this appendix we catalog the error messages that may be
produced by our compiler and run-time interpreter. (At least
these are the ones we have seen!)

Oliver's Error Messages

The compiler generates error and warning messages when it
finds what it believes to be syntactically incorrect programs.
This happens when the parser, following the grammar, cannot find
a production to apply that will match the input. The actual
error may be the current symbol that cannot be matched or an
earlier error that led the parser to the wrong production.

In a few very simple cases, the compiler may try to correct
the problem itself and continue the translation. When this
occurs, a message such as the following is generated:

{line #} -- ")" inserted before {symbol}

Often, the compiler will produce a more ominous error
message and then skip to the next convenient keyword or symbol
and attempt to continue processing. These messages look 1like:

{line #} -- {symbol} unexpectedly encountered.
skipping to {symbol} in line {line #}

If the compiler can not get itself synchronized with
recognizable input, it may give upwith a message such as:

{line #} -- {symbol} found. Translation terminated.
or
{line #} -- {symbol} unexpectedly encountered. Trans-
lation terminated.

This information is not in a very friendly form but it usually
provides enough of a clue to find obvious errors.

Sherbert's Error Messages

The runtime interpreter makes a number of checks while
loading object programs, during program execution, and during
garbage collection. Loading errors are usually caused by trying

to load source code instead of object code. One of the following
messages may be generated:

*** [.oader -- error in number ***
*** L,oader -- Unrecognized symbol {symbol} **#
*** [L,oader -—- error in expression syntax ***

A T L S AR L T \f._ﬂ
e AR S e e St



T a s s k. N

Many execution errors stem from incorrect use of recursion
(which is a good reason to use function-forming operations!).

These messages include:

*** Sherbert --
*** Sherbert --
*** Sherbert --
*** Sherbert --
*** Sherbert --

head appl ied to empty sequence ***
tail applied to empty sequence ***

forward cell on stack **#*
Unprintable expression on stack ***

stack overflow ***

Larger programs may consume more storage space than is

available.
garbage collection:

*** Sherbert --

This will result in the following message during

survivor space exhausted ***

Pascal Error Messages

As a final insult,
messages from the Pascal run-time system.

it is possible for some errors to produce
The most common of

these are caused by misspelling the program file name and by an

arithmetic overflow.

and

) Y LB PP R SR T AR e W Y
", AR > : 4
R AR ot S S R et 034

These messages look like:

?2 Error: File not found in file example

Error Code 1032, Status 0002
PC = 0004: 109F; SS = 13BE, FP 6D5A

092D, sp

? Error: signed math overflow

Error Code 2054
PC = 1346: 00B3; SS = 13BE, FP

6F42, SP = 6F44

34

LR e § Y Ay B " ‘ L p L » -
s A Beikte, e ! Wt 1 .k“k‘t'i‘. PRAID, 0‘!':‘!'5‘?%"')'!'0 -':'!' KN

L

-

B om ,'_"-.~

Ayt b N

v

Y Y

L it ‘%

24 o
.~



" !
N
t:Sv INDEX
"' ~~~~~~ ~ oo a0 aw
L:'J
'_ absolute value 8
AL and clause 8,9
Kt
" bottom-up implementation 21
. built-in operations 11-13, 29, 30
s
b;':l;‘ conditional expressions 7
ah concatenate 7
R cons 7
ot construct 13, 29
vy data flow diagrams 21
::f_ define 14
:C: definitions 8-14, 29, 30
Sl
- ‘- expressions 2, 3, 5-10, 14
- filter 12, 29
ALY
;:‘,.'v formal parameters 8
i functional 2, 3, 10
':':"R function application 6
Lhnhe function composition 2, 10
function definition 8-14
AN function-forming operations 1-3, 10-13, 22, 29
:"'*.; function-level expressions 10
j's::" 5t generate 12, 29
iy global definitions 14
-i"i‘;i head 7, 28
R jdentifier 5, 8
e if-then-else 6, 7
R infinite sequences 7, 12, 15
- infix operators 5, 6, 27
i input 14
o 'ﬁ)‘:
0 J-.“-.» length 17
15 literal values 5
&@1, local functions and variables 8, 9
Al
k. e map 2, 12, 29
xjo” RS methodol ogy 21
% ‘);, nested definitions 9
IXPASAPY
o ' output 14
- .2' <t
)n. (ALY
.. ):"
o ‘:ﬁiﬁ
o
*\Al..l,n "-
B 35

LN S S S
> S A A
_\-_-}_‘. ' oy NG

¥



ad TN TSR EFENFE N EFET RN IITOTTEITe TR T W LW LY WL e T -*1

2 BRRT

K parameters 8

5 Parentheses 5

) partial application 11

N patterns 9, 10

¥ precedence of operators 6

" predef ined functions 6, 27, 28
Y predefined values 5, 27

4 pref ix operators 6, 27

‘l

programs 15-20

random numbers 8, 12, 15

recursion, recursive functions 8, 9, 11, 22, 29
reduce 13, 30

\ relational operations 6, 27

N reliability 1

reserved words 5, 27

reusability 1

o scan 13, 30
K, sequences 5, 7, 9, 10
. sequence construction 7

semicolons 9

side effects 1l

special symbols 5, 27
statements 2

streams 7

P strings 5, 7

structured parameters 9, 10
subordinate definitions 8, 9
sum 10, 13

-

tail 7, 28
top-down design 21
tuples 5, 7, 9, 10

g ke i &

variables 8

where clause 8,9

36

W

2 ook f () "™, 4o, o (= 3 &l » n
v W W J, oS x\. ,. %
ORI -‘*'o" :'"0".0'5" WL .v t'u'i‘a N R N A R A I R T N Ny W



o o oL

ol

Annex B. VAN USER'S GUIDE

P P U A P W A o s
*Yﬂ.\,‘l \_.'.- . I YN -’:_.n,:n -).‘p.‘..*'-(

::..: \l!:-_
o

{‘.‘J‘\ £y i_-r.-a AR .,ra
S AR




“Abuhle le i Ak ahe M die Ain Al Son fie Rfa

: VAN

2 DATA FLOW DIAGRAM EDITOR
% USER'S GUIDE

Version i

& July 1986

~.',.,‘.\".5'1.- R

Yy aturten



e
g
! Al A
‘r’i‘dh‘t_’?e

Van

Data Flow Diagram Editor

User's Guide

Version i

July 1986

Audrey M. Rogerson
Reginald N. Meeson, Jr.

Computer Technology Associates, Inc.
7501 Forbes Blvd. Suite 201
Lanham, MD 20706
301-464-5300

This research was sponsored by the US Navy, Office of
Naval Research under contract number N00014-84-C-0696.




TNy \'\‘ ‘f -\'ﬁ"ﬁﬁ\" ""\{: s ;A' At

f' 'J--.r .r.f

Copyright (c) 1986, Computer Technology Associates, Inc.

Permission to copy this document for personal
or educational use is granted provided that
copies are not made or distributed for com-
mercial advantage.

ii




“

iii

g A s AR RR R

e ettt bt s et Aot e el el sadiieel A e ® e B Db inde) Eaidn ok o sov S fiani diniobd  abS -and SRS o auged b Sl - ik Aok ot - R St iliie 2 B - 2 At fiedn 1 "'}"?_"Fﬁ
W i
N =|
N !
N‘
-.j TABLE OF CONTENTS
g messsosooosseemmemETEST
\:
%Y
Bl
LT3/ *
P!_‘
s Preface v
5 |
o i
. l. Introduction 1
L
o 2. Using Van 3
WY
SO
p o Getting Started 3
N Selecting Commands 3
Selecting Locations and Elements 3

g Editiong Text 4
:-‘:.& Van's Menu 5
SN
e 3. The Editing Commands 7
".a 1
R 4. A Sample Editing Session 15
_:-,'-'_';- The Problem to be Solved 15
- Drawing the Diagrams 17
.\.'-'_:'-
e 5. Executable Data Flow Diagrams 43
SN Ambiguities in Data Flow Diagrams 43
_-;-Z::-.:; Compiling and Executing Data Flow Diagrams 45
o

.) '-
OCNS .
YN van Quick Reference Guide
)
'.l ._.
.r'“‘“‘}
‘--:'q“.'n
,‘:s.jx
PN
L




R e 8 el B St 08 & A8 b st ca 48 Aua fiis fin Ao & by Sia 800 abn Al 4o aie~ub Al Al ab il ouk wad ~nlk aai)

PREFACE

-y Mo A0 O o o "y

This manual is a guide to the use of a data flow diagram
programming system that contains an mouse-driven data flow
diagram editor, called Van, and a compiler that translates data
flow diagrams into executable code, called Vincent.

Van and Vincent were developed as part of a Small Business
Innovative Research (SBIR) project sponsored by the U.S. Navy,
Office of Naval Research.

Van and Vincent run on IBM PC's and compatible micro-
computers. Van currently requires a Hercules graphics board.
Van supports three kinds of mice (Mouse Systems, Summagraphics,
and Microsoft) and produces hardcopy drawings on Epson-style dot-
matrix printers. Vincent requires no special equipment and
produces portable run-time code.

We would appreciate your comments on both the content and
construction o7 this manual and on the tool itself. We will
attempt to incorporate all viable suggestions as we continue to
develop and enhance this product.

TR L R R L P A R R L LY Rl S LN
:“:ﬂ”i:‘::‘i\:"}“i".:'ﬁ“;‘riz;.‘-l“-fﬂ ST




1. INTRODUCTION

S e D En e AP Co Sy Ay P P Cp Sp B e S b o

This manual describes the operation of Van, a mouse-driven
editor with which you can interactively create and modify data
flow diagrams. Van allows you to manipulate data flow diagrams

on the screen, save and retrieve diagrams, and print hard copies
of the diagrams.

Van's data flow diagrams consist of the standard data flow
elements (processes, interfaces, data stores, and flows) with an
additional element which we call data flow diagram text. For a
further discussion of data flow diagram techniques and conven-

tions, see Tom DeMarco's Structured Analysis and System Specifi-
cation (Prentice-Hall, 1979).

Section 2 describes how to use Van. It includes basic

instructions on how to select commands and how to respond to
prompts.

Section 3 provides a detailed description of the action and
use of each editing command.

Section 4 demonstrates how to create data flow diagrams for
a simple program. The problem and the diagrams that specify the
solution are presented first. Then, an editing session that
would create these diagrams is illustrated in detail.

Data flow diagrams created using Van can be compiled into
executable code. Hence, you can program with data flow diagrams.
An explanation of how to compile and execute a data flow diagram
is given in Section 5. This section also includes a discussion

of the semantics of data flow diagrams that are essential for
compilation.




LB A S A Eod Al s doa Rak sk ens _Ske-dbandae aon Sas S s i dd A bl el el tale Auiiadh A oh AS adhit At anbd A AL A Sl '---T

s

s &
]
]
]
t
]
.}
]
]
t
]
t
]
]
]
]
]
t
]
t

s
N
Q
:
<
2

 J ',

Getting Started

L

’f; Van resides in a file called "VAN.EXE" and is activated by

- the command line

e

- A> van

v

;{ Van will first prompt you to indicate the type of mouse you
> have. Once Van receives this information, the initial menu is
N displayed with a blank screen so that the editing process can

begin.

,.. W

f_: You interact with Van by means of the mouse and the key-
‘ :5 board. Commands, data flow elements, and positions on the screen
'ﬁ** are selected using the mouse. As youmove the mouse, the posi-
iR tion of the crosshair cursor changes on the screen. If the mouse
- does not move the cursor, then Van is expecting input from the
P - keyboard. The keyboard is used for entering and editing textual
ﬁfﬁ information, such as file names and identifiers for data flow
Wi elements.
B

i Selecting Commands

oy
;k“ék To select a command from the menu, move the crosshair cursor
‘:Hy into the menu area. Each command is associated with a field that
ﬁﬁpﬁ encloses the command name. As you move the cursor into a command

e

) field, the command will be highlighted. Then, pressing any

button on the mouse will invoke the highlighted command. The
:”Ff command field will remain highlighted until the command is com-
ﬁﬁ;\ pleted or cancelled. Figure 2-1 shows the position of the cursor
g as a command is selected. The details of what each command does

v are covered in the next section.

ARG

L X2

NI Selecting Locations and Elements

- 4_'_.

iﬁjﬁ To select a location on the screen, move the crosshair
.ﬁﬁﬁh cursor to the desired point and press any button on the mouse.

e i
h*; 3 To select an element on the screen, move the crosshair i
~avIv cursor to that element and press any button on the mouse. For 1
l;?x;} processes and data stores, place the cursor anywhere within the

:£;¢4 circle or box. ?o select an interface or a flow , you place the
’*fxﬁﬁ cursor in the vicinity of the center of the interface label or

A iy midpoint of the flow. By "in the vicinity" of a point we mean

T that the crosshair cursor extends out to that point. Finally, to
PrXaraT, select data flow diagram text on the screen, you can place the
'f@ﬁﬁﬁ Cursor anywhere on the text.
Sh5ugNs
4 '5):.)' 4
'.' A y




R il Aok S8 Ao B 2 duh A Ate S0 Au Ach A o Ahh Aka hia Ale Ala- Al Rle hla Al ARl Balh 00 Sl Aol S AU Mol it A i A Al R AL M L AR A AS abil iR abd nibi AR A R A T T S A SRl S

Kdi ting:
Options: Add Fetoh |louit

Message: Seleot command.

Figure 2-1. Positioning the Cursor to Select the Fetch Command

Try not to place elements in the diagram too close together.
One reason for spacing out the elements is simply to make the
diagram easier to understand. Van may have difficulty selecting
the right element if elements overlap.

Editing Text

Entering and editing textual information, such as file names ,
and identifiers on data flow elements, must be done from the .
keyboard. Van recognizes all of the alpha~numeric keys (upper
and lower case) in addition to the following special keys:

AJ
Backspace -- moves the cursor to the left one character [.}
and deletes the character over it. 3

Back Tab =-- moves the cursor to the beginning of theE
text. ]

o
Delete -- deletes the character over the cursor. &

T s A L . I
L ""‘4 'l e "' e*‘! “'o . o!ﬁl’...e‘ 30 ’.‘a‘h ..h‘..n‘-la.h '»" "o"‘a"'n :‘“ .



e s Sl L Mat e ol BAk Sal s mok ey ang o 2 g A0 Sk £ia 4a o i h A 4 A a-n i d- b Ad i Bih Al i den ana Al Ale ate o Ali-ad b el tad cnd wd |

Enter -- enters the text as it appears.
Escape -- enters the original, ummodified text.
Insert -- toggles text insertion mode.

Left Arrow -- moves the cursor to the left one character.
Right Arrow -- moves the cursor to the right one character.

Tab -- moves the cursor to the end of the text.

Van's Menu

An example of a Van menu is illustrated in Fiqure 2-2. The
menu is divided into three areas with the headings, "Editing",
"Options", and "Message."” The "Editing” area displays the name
of the file which contains the current data flow diagram, the
word "Modified" if the diagram has been changed, the word

Editing: exarwple.dfd Modified
Options: Add Clear Delete Fetoh Label Move Print

Quit Save Sequence Title Zoom~in Zoom-out
Message: Seleot command.

Exanple Screen

interface § e ° interface 2

data store

Figure 2-2. An Example Van Menu and Screen

. o U S S T R S e A
B A A AT A Myt R AT A 7
la. ria'lal ALA‘M“’;LAA".“.‘J_!—L .I“'_n 2




"Saving"” when the diagram is being saved, and the insert mode
("Insert On"™ or "Insert Off") when you are editing text.

The "Options” area displays the list of available commands.
There are three different sets of available commands which
correspond to different stages in the editing process. The first
set is the list of Initial commands. This list appears in the
beginning of the editing session when the screen is blank. The
complete list of Van's commands is called the list of "Normal"
commands. Van displays the list of "Normal" commands when the
screen contains at least one data flow element. The third set is
the list of "Add" commands which appears when you select the
"Add" command from either of the other two lists. The three
lists of commands are given below:

Initial commands:
Add Fe tch Quit

Normal commands:
Add Clear Delete Fetch Label Move Print
Quit Save Sequence Title Zoom-in Zoom-out

Add commands:
Addflow Addiface Addproc Addstore Addtext End

The "Message"™ area of the menu displays prompts and messages
for the user. The "Message" area is also where labels and data
flow diagram text are displayed for editing purposes.




L 3. THE EDITING COMMANDS

“ O A AP A S A S A S S S - AP Gv RS NP Ay AP EP Sy S Sn Gy P = - o o o

o This section provides a detailed guide to the action and use
. of each editing command. In general, you can cancel a command
N which first prompts for input from the mouse by moving the cursor
o into the menu area and pressing any button on the mouse. Com-
o

mands which first prompt for input from the keyboard can be
cancelled by pressing the escape key, ESC. Prompts for a "yes"

or "no" will be followed by "(¥/n)" or "(y/N),"” where the default
appears in upper case.

You may respond by typing "Y" or "N" in
either upper or lower case.

’ i

e T e Y
]

Add -- Add a data flow element to the current diagram.

S When you select the "Add" command, Van displays the "Add"
Pt menu and enables you to select one of the following com-
mands:

¢

Addflow -- Add a data flow.

-F\:-

'f.:j When you select the "Addflow" command, Van displays the

f- prompt :

v "Select the starting element for the flow"

'\-"T-

s in the message area of the menu. After you select the
e source element for the flow, Van displays the prompt:

LG

:‘ ; "Select the destination element for the flow."

{-J ' After you select the destination element Van draws the arrow
.,. and displays the prompt:

o

" “"ZJ}:, "Enter data flow name:"

e

PRI for you to enter the name of the new data flow (which may be
blank).

Y '

2NN This command can be -cancelled at any time before Van draws
\;\f} the arrow by moving the cursor into the menu area and pres-
TN sing any button on the mouse.

5T ,
3:‘-:{._-} Addiface -- Add an interface.

e,

,.;-_:__::_ When you select the "Addiface" command, Van displays the
B> 4 prompt :
*._. "Select the location of the interface.”

ey
":.';‘1‘ Once you select the location, Van displays the prompt
y 7,
YO ,:

.......

A LN A AT A A
o\ '}qn N AR A N




Me a0 AR aaa Al et e aad ik Ll el AR ARt Al AAY Sec Az fne ia g g i il Sed sad e aded Bl Aol Ao b Aok el feledod b Akt diddedindb e didied —-'—-v—-r-u“‘v“““w
{

"Enter interface name:"

When you enter the name of the interface, Van centers it at
the location you selected.

This command can be cancelled before you select the location

by moving the cursor into the menu area and pressing any
button on the mouse.

Addproc -- Add a process.

When you select the Addproc command, Van prompts:
"Select the location of the process.”

Once you select the location, Van draws a circle centered at
that point. Van then displays the prompt:

"Enter process name:"

When you enter the name, Van centers it in the circle. Van
then prompts:

"Enter source file name (filename.ext):"
This is where you enter the name of the file which contains
(or will contain) the data flow diagram that defines this
process. If there is no further definition then simply
enter a carriage return.
This command can be cancelled before you select the loca-
tion by moving the cursor into the menu area and pressing
any button on the mouse.

Addstore -- Add a data store.

When you select the Addstore command, Van prompts:

"Select the locdtion of the store.”

After you select the location, Van draws a data store symbol
centered at that point. Van then displays the prompt:

"Enter data store name:"

When you enter the name, Van centers it inside the data
store symbol.

This command can be cancelled before you select the location
by moving the cursor into the menu area and pressing any -
button on the mouse. -

------

. g e .- e e
LA T L s {’\-'.' .--'J',"J'_ I_;I_“I_.,-_'..-_.- SRR ._','.",’-_- \{\-."' PRI :_“.. PR AR .._‘,}\‘ .y -"\? -__\.\ .
I N d}&‘g} AR AL A N AP IR A R N N A R I T AW S ol iy nd




Addtext -~ Add data flow diagram text.
When you select the Addtext command, Van prompts:

"Select the location for the beginning of the text.”

Once you select the location, Van displays the prompt,

"Enter text:"

and writes the text beginning at the selected location.

This command can be cancelled before you select the location
‘_.. by moving the cursor into the menu area and pressing any
button on the mouse.
a2
,*ZE Clear -- Clear the screen.
:-’,‘-f This command clears the screen so that a new data flow
bk diagram can be created. If the current diagram has been
L modified when you select this command, Van will remind you
}’_'.x to save the diagram by displaying,
]
g
’ﬁ "Save the current diagram? (Y/n)"
. :
vt . ;
e If you do not want to save the diagram, you must respond by j
S typing "N". Otherwise, Van will prompt, i
"Enter file name in which to save diagram (filename.ext): !
o [current filename]"
l '.\
bl Van displays the file name for the current diagram in case
o " you want to edit it. Van will save the diagram, as direct-
i ed, and clear the screen.
',zr'_’.’
e
‘5.-{«;* Delete -- Delete a data flow element from the current diagram.
"";# When you select this command, Van prompts:
o "'q‘\' . )
}:i:::g. "Select -element to delete.”
bAC T
,,-:;.'p; When you have selected the element to delete, Van requests
R e you to confirm the deletion by displaying the prampt:
:';-.;QJQ "Delete [element typel? (y/N)"
AT
::‘;_; You must type a "Y" to delete the element. Otherwise, the
ol command is cancelled.

This command can also be cancelled before you select an

element by moving the cursor into the menu area and pressing
any button on the mouse.




WITWF N T TN TN ERY NN "T

- When you select the element to delete, if the cursor is not

close enough to the element Van will display the message:
s "No element selected - try again"
2
2
k ‘33 End -- End the Add command.
Ly

Whenyouno longer want toadd elements to the diagram, this
S command will take you back to the menu with the list of

| \E normal commands.
[
-
;-'-'.ﬁ
Sl Fetch -- Retrieve a saved diagram.
- When you select this command, Van prompts:
)

!
““v "Save the current diagram? (Y/n)"
k)
2:.;;..’,. to remind you to save the current diagram first. Unless you
S type "N", the diagram will be saved. Van then displays the |
e praompt: ‘
AN
-"%: "Enter the name of the file to retrieve (filename.ext):"
g
oy If the file cannot be found in the current directory, Van
b will display the message:
g-.:f: "Unable to find file. Check file name"
Y
AH¢h .
N and cancel the command. Otherwise, Van will display the
k 5{‘ message:
;ﬂ "Reading display file"
%,V
LY
::::E:- Van will then clear the screen, and draw the new data flow
"':‘::: diagram specified in the file. If the file does not contain
it',. a diagram readable to Van, the message:

"Format error in display file. Command cancelled"
R ;
- will be displayed. {
y :
- Label -- Add or Edit a data flow element label. g
L)
,tf-\ This command is used to edit labels on data flow elements;
YA such as data flows, interfaces, processes, data stores, andt
.:;: also to edit text. When you select this command, Van.-
x'[.,:: displays the prompt: E-
:’;—i—"' "Select element to label.” !\'1
h: When the element is selected, Van prompts for the new label
‘;:E:' J
.'l",::‘ 10
B R oy S o R A N T R Y



with
"Enter label: [current label]"

and allows you to edit the current label. If the element
selected is a process, Van will also issue the following
prompt after you have entered the new label:

"Enter source filename (filename.ext): [current filename]"
so that you can edit this if necessary.
then replace the old one in the diagram.
new file name will also be stored.

The new label will
For processes, the

- i Ak
oy &

This command can be cancelled before you select the element
by moving the cursor into the menu area and pressing any

. button on the mouse.

3

A Move -- Move a data flow element.

b

g When you select this command, Van displays the prompt:

’ "Select element to move."

j.: If the element selected is an interface, process, data store
S or text, Van displays the prompt:

o "Select the new position for the [element type]."

4T
\"I_*_ The element type is displayed to help verify that the right
‘,i., element was selected. When you select the new position, Van
N redraws the diagram to reflect the change.

If the element selected is a data flow, Van issues the
O prompt :

'\":-_.

::a;:j "Select the new starting element for the flow."

VAR
. When the selection is made, Van prompts:

:;C:' "Select the new destination element for the flow."

e
.‘;ﬁ}_‘. When the second selection is made, Van redraws the diagram.
[} gt -

i .

R This command can be cancelled before you select the new
T position (in the case of moving a data flow, before you
Vo select the destination element) by moving the cursor into
Sl the menu area and pressing any button on the mouse.

P

' P

"!A :

R Print -- Print the current data flow diagram.
0548

y_ﬁ:-f.'_ When you select this command, Van displays the prompt:

.x..‘-'.n
L ",

*:‘ {'-
Tl‘
R 11
T
s
[} 1 ad

----- . -'.‘T.-P-'v'

: .
Ao,V » Wp P 0NE 8 O 00,

’ " - e .F
l‘:!'-'n?"y, el 4%

SO ’*.J‘."./'-', ~.‘

- s SNSRI
*'-’,‘D".'\ '?fx.f n ) T '..‘-'.
RN R, Nt ataitn a1t 0t 0 i o

T T T TR R
Bt AR A XN, R

% 0¥




e A Sha At afe-iie el i ke Bl gl 2eo See Mhe die oo Aaa: Mae 8o 4o Mhead ghe i AReabacain Abe S dde sos-aln il aiac AR Anotebor Al ek valie-an. e Sk el aa tal an -]

Quit

Save

Sequence -- Sequence the flows into a process.

"Print the full diagram? (Y/nm)*"

"Full® diagrams include extra information required for com-
pilation (see Section 4). If you do not want this informa-
tion to appear in the printed diagram, respond by typing an
"N". This will cause Van to display the prompt,

"Print the basic diagram? (Y/n)"

"Basic" diagrams do not show any of the extra compilation
information.

Van redraws the current data flow diagram to keep the
printed copy in proper proportion. When the printing is
completed, Van restores the original image on the screen. -

== Quit the editing session. Exit Van.
When you select this command, Vanwill ask you to save the

current diagram if it has been modified by issuing the
prampt:

"Save the current diagram? (Y/n)"
You must type "N" to exit Van without saving the current
diagram. Otherwise, Vanwill save the diagram and exit to
the operating system.
-- Save the current data flow diagram.

When you select this command, Van displays the prompt:

"Enter file name in which to save diagram (filename.ext)”
[current filenamel" -

-

Van displays the current file name so that you canedit it:
if you want to save the current diagram in a new file. If ~i
you enter a carriage return without changing the file name, _
Van will overwrite the original file.

.
13
‘-1

This command is used to specify the order of arguments for afl
process by sequencing the incoming flows. When you select
this command, Van displays the prompt:

"Select the process to sequence"

and waits for a selection. When the selection is made, Vanfﬁi
displays the prompt:

"Select the flows into this process in order."

12

BT S T e RIS "
NN R (S oG s G RS



o aha ada e ol aac s 4 " - e - Zad

)
-«".:-4
:E:' Select the flows into the process in the order which you
desire. As you make the selections, Van appends the labels
on the flows with "([sequence number])." After you select
N the last flow, cancel the selection process by moving the
oY cursor into the menu area and pressing any button on the
Ll mouse. The Sequence command itself can be cancelled at any
RN time in the same manner.
o
o Title -- Add or Edit the data flow diagram title.
o
sy When this command is selected, Van displays the prompt:
‘o
eis "Enter title: [current title]"
W You can then edit the current title, if one exists, or
A create a new title. Van centers the title at the top of
2 the working screen. Note that the title is not a data flow
'1.:‘&:; element and therefore cannot be moved or deleted using the
KM "Move" or "Delete" commands. You can remove the title by
T selecting the "Title®™ command and blanking out the field.
NN
:"‘:{‘ s 13 .
o Zoom-in -- Move down one level in the diagram.
o
s The Zoom-in command is used to travel down the tree
structure of the diagram. When you select this command, Van
oA saves the current diagram if it has been modified and
‘AR displays the prampt:
wnls
RN "Select the process to zoom in on."”
/ARG
' If the process you select has not had its source file name
TR specified, Van will display the message,
N
j.':-;'.:j,.v "Process doesn't have a function id -- command cancelled.”
'-'_‘yf_.-.‘
f.:-, If the process has a source file name but Van is unable to
"8 locate the file, Van will display the message:
::Q;Ei "Unable to find file. Check source file name"
-:"\"'.
&_\E_':. and cancel the command. Otherwise, Van will read in the
AN display file which represents the definition of that process
T -l and display the message:
,F.d-_".'-'
pADARAN "Reading display file"
. ,-:,.:.._...
2::1‘_:';'_:3 Van will then clear the scre~-. and draw the new data flow
B, diagram specified in the file. If the file does not contain
e a diagram that Van can read, t..e message:
T E
e, "Format error in display file. Command cancelled”
-J‘-.
:'-r::.
% ta el e s % e N “n

- - -,
PP AT AR
PG ,'J' ol

Y

R AN
A A At s >

»



5 T

L B R G VR

-, &,

wllalSf &

S NN, |

will be displayed.

This command can be cancelled, before you select the process
to zoom in on, by moving the cursor into the menu area and
pressing any button on the mouse.

Zoom—out -- Move up one level in the diagram.

This command is used to travel up the tree structure of the
diagram. If the current diagram is the top-level diagram
when you select the Zoom-out command, Van will display the

message:

"At top level. You cannot zoomout"

and cancel the command. Otherwise, Van will save the
current diagram if it has been modified and display the

message:

"Reading display file"

Vanwill then clear the screenand draw the parent diagram.

S ol S

PR LA . -
LI = 1| 2

X

'4_:,', “ l’."

“~

R
P
PN AR




- - L <~ - et o ia- st RaV Bal Rt el Rl e R i) . LR LRI e W

4. A SAMPLE EDITING SESSION

P D > > > P A >y O TP B D P EP CP O . AP - - - oy o - >

In this section we demonstrate how Van is used to create
data flow diagrams for a simple function definition. First we
describe the example problem and its solution in the form of data
flow diagrams. The we illustrate in detail the sequence of
commands that generates these diagrams.

The Problem to be Solved

Consider the problem of averaging a sequence of integers.
To average a sequence, "s", of integers, you divide the sum of
the integers by the number of integers in the sequence. The data
flow diagram which corresponds to this definition is shown in
Figure 4-1.

We now need to define the sum function. We use the Ernest
function-forming operation "reduce." "Reduce" accumulates the
result of applying a binary function ("+") between elements in
the sequence, s. The initial value of the accumulated result (0
for addition) must also be supplied. The function "reduce (f)",
therefore, is the function that adds all the elements of "s" to
the initial value 0. Using this function, we can easily repre-
sent sum(s) by the data flow diagram shown in Figure 4-2.

AN

count

N~

div average(s)

Figure 4-1. Data flow diagram for "average(s)"




o °
o
L)
& duoe("+*) sunCs)
v’m
b

WA
h‘{

& Figure 4-2. Data flow diagram for "sum(s)"
R , .
v Similarly, we can represent "count(s)"” with the diagram
Wt shown in Figure 4-3. 1In this case, though, the accumulation
hay function, "incr", adds the value 1 for each element in "s"
e instead of the values of the elements. That is,
2804 incr(a,x) = a + 1 -- for any element x

IR
AN

N
e

ERY

0

s
;:'
i 0
no

'
o
; duce(inom) ocount(s)
‘J‘
e
o !
oA s Q‘
K- i
-(\. Figure 4.-3. Data flow diagram for "count(s)" ¥
A : o
b\ .
b2 p
’ 4
", - .,
.- '’ * :
o .
W phY
G i
"‘.l' .I'Z
1 l
155¢ -
¥ .
2
W .
v . N
Ly 6 -
r.

— o \J
s

o . e \'N

N N AT RN AR e AR 3 S S S T
D GG A A M) gty RO AN L ORI ITR S At ey TN T S R WML



v—vr—-'~t~v'."‘-":~vvvv1
Drawing the Diagrams
. Once Van is activated by the command 1ine,
N A> van
: an introductory screen will appear. The lntroductory screen
prompts you for the type of mouse you will be using. Enter the
number which corresponds to your mouse,
-
!
'-':,
R
s, VAN de GRAPH GENERATOR
'j: Computer Techriology Asscociates, Irc.
-
-’.':
AR
fhf' Please irdicate the type of mnouse in use
R
N Ernter the riunber: 1 for a Mouse Systems Mouse
PN 2 for a Summagraphics Mouse
, 3 for a Microscft Mcuse
":'.:::
S
’I..N..
A
"-.
AN
Agng)
.r::.',:./
o
COCA
$ a}‘
A
'-'.'-:\
N
RN
it
_' A ‘».‘_
NEo
-f"-rt;-_.
i
a - 1'7
'“"
s " .

- T RN N A A G A S S N L LY
e R R e S g g N A R S AN S > |

.A_; a3 A.J'...A}.A J'u



W W Y e W ey T YW T - oW THFUTWY T W TN U W TR R e s Trm T o e T W e m e -T

Van now displays the initial menuwith a blank screen. If
you want to the draw the diagram for average(s) first, select the
"Add" command from the initial menu

Lditing:

Options: [Add— 1Feseh  Quit

Message: Seleot ioomnl.

-

l"
"

ANAR]
- ’l"l{
e

Pl LS

LACS

Catd
<
18 .
-‘.‘

¢

‘::

LTS I S SR L NS ST B D AT B} W ey Sy ".':~((\“l’\','."f VTR , i adEm A" 'y \ !
LA w* o o ORI " v ! . 4 () %, ¢ “

) vt NS AV A.c n ‘.' NI "( b ) L G N DO

AR

}
)

-
o

L
P

o N
PO ,i"'_' KA



i

g o W g o P
,éﬂ\ a al ' " ' J‘

When Van displays the "Add" menu, select "Addproc” to draw
the first process.

Ldi ting:
Options:

Message: Seleot oommand,

Addflow uuuo.ﬁn@unou Addtext End

B L R T DA ARty
NN 4‘ M b O p N L T Pa C o L




-“ > -
)
)
4
2 Al
W
>
N Van now prompts for the location of the process. When you
54 select the location, Van draws the circle and prompts you for the
name of the process. Key in the name of the process, "div".
%)
!
1%
10
>
(L
LA
‘ Edi ting: Insert OFF
:" Options: Addflow Addiface|Addproc |Addstore Addtext End
3
; % Message: Enter process name: div
f.‘
.
L
=
!
N
™
.‘w
i .
4 AN
" ‘.
P >
b ]
?' L
fe, o3
*» >
e -8
'.") _\:
J-:" o
4
e~ 4
e, :\_
s -, N
>, I,
) k..
-, ;\d,.
N I
[ . (0
s o
N t 4
h, 30
- E
o e
N et
el
".. ‘
‘t: .P.{
" W
i‘ | I'\.-i
’ .-\..
* AR
'.. -:\-‘
WY ,!.\ﬂ
h A
O (]
' 20 b i
W LY
y NS
S At
e 24 - e ) g, L] - - eyt NN A AR N, Cn A % W o '- ﬂ~\' ~‘ﬁ.q.'.-_' " -I__'. I - o -
A l"’b“.‘b'?l.!'t ,‘"- '.‘-“' -5." z J ‘ B '\ \ ‘, A X \‘- il B \. ..‘ .’-‘ :( o . .).) y . %




et e S T L e B ol g S B M * R e v TR U W T WU WW T W VW W OTW T W T W TN TN TR T O e

When you press the Return key, Van puts the name of the
process 1n the circle and prompts for the source file name.

Edi ting: Insert OFF
Options: Addflow Addiface [Addproo | Addstore Addtext End

Message: Enter source file namne (filenane.oext):

21

oS e NS



AN b

Since "div" is a built in function, we do not need to define
it with a data flow diagram and can therefore answer the prompt
for a source file name by pressing Return. You can continue in
this manner until the three processes in the data flow diagram
for "average(s)" have been added to the diagram. Note that the
source file names for the processes "sum" and "count” can be
specified when the processes are added, if you know what files
they reside or will reside in, or later using the "Label" com-
mand.

Edi ting:
Options: Addflow Addiface Rddprooc Addstore Addtext End

Message!

div

OO UL G L A U CA LR s NG CRL
A S SRS i 5o




e e e r e R T E e e E W e

If you then want to add the interfaces for the diagram,
select the "Addiface" command. Van will prompt you to select the
location of the interface. Select the location for, say, the
input interface. Van then prompts for the name of the interface.

Edi ting: L Insert OFF
Options: Addflow Iﬁddu‘aoolhddpwo Addstore Addtext End

Message: Enter interface name:




After responding to the prompt by entering "s", Van will
draw the name "s"™ at the location and clear the prompt. !

Edi ting:

Options: Addflow Addiface Addproo Addstore Addtext Ind
Message:

- "y

P o O S ot R Pt o .
» -s"" o W h :'n-nhw’*:',.

L pC 0 3\



The output interface, "average(s)", is entered in the same
manner.

To add the flow from the input interface "s" to the process
"sum®, select the Addflow command. When Van prompts you for the
starting element, select the interface "s." When this is select-
ed, Van prompts you for the destination element.

Edi ting:
Options: [addflow | Addiface Addproc Addstore Addtext Ind

Nessage: Select the destination element for the flow.

I average(s)

AN |




A
A I

Pl

If, for example, you select the process "sum", Van draws the
flow and prompts for the name of the flow.

Editing:

Message:

Enter data flow name:

Insart OFF

Options: [Addflow | Addiface Addproo Addstore Addtext End

-

average(s)

__




4
o
{

LN Ay A
LY

VY

'.' \‘q_l,- PR

=i e dart Sl Dol St el

Since this flow has no label, you can respond by pressing
Return. This completes the Addflow command.

The other flows 1n
the diagram are added in the same manner.

Edi ting:
Options:

Addflow Addiface Addproo Addstore Addtext End

div average(s)

sount

27

AR SRR
LIPS 2 he




If you want to clean up the diagram by allowing only one
flow from the input interface "s", End the Add command and select
the Move command. Once you select the Move command, Van prompts
you to select the element to be moved. Select one of the flows
originating at the interface "s."

Editing: Modified
Ovtions: Add Clear  Delete TFetah  Label (Wove | Print
Quit Save Sequence Iitle Zoon-in Zoom-out

Message: Celeat slenent to nove.

\)\

count

averagel(s)

28

\,_ MO R N

A $yE ) '~'-"..n‘.~. Ll B o
- i st . 3 S - j: :
L_bfm :fﬁ .I&.A.\‘:)L ﬂ.dx.im}ﬁﬁ A‘M& ﬂt\l&ﬂn&dhn\&.;»ﬁ.ﬂ& o ..i‘...ﬁwﬁ.ﬂm AP




AD-A172 958  FUNCTIONAL PROGRAMMING(U)> COMPUTER TEgHNOLDGV
a




:"- oy Y o, o
e g T
SRR

-~
»

-
'L & -a

1
-

o st
L &= ~
= &

2 It hie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS-1963-A

phats g
2 AP Ny ¥yt A n
e Uh,g’mnt’n .’J.‘?n.”},’, ‘g. .,:. Sachaaane |
W e ‘.!' Welgy :notu
R W ! N
Im‘miﬂﬁ‘fk‘,\'w

3




Rba Aba dan Ara don doa ko A ad o s as 2 g o o |

When the flow is selected, Van prompts you to select the new

source element. Select the other flow originating at the inter-
face "s."

Idi ting:

Medified
Options: Add Clear Delete Fetoh Label [HWove _ |Print
Quit Save Sequence Title Zoonm-in Zoom-out

Message: Seleot the new starting element for the flow.

sSun

div

average(s

oount

29

-}‘5"5153&&1



e e B
. s

£

#’ ‘
l
bt
IS

Van now prompts for the new destination element.

process “count”.

with its new orientation, completing the Move command.

Select the
When this is selected, Van redraws the flow

Ldi ting:

Medified
Options: Add Clear Delete Fetoh Label Move Print
Quit Save Sequence Title Zoon-in Zoom-out
Message:
s
average(s)
OOLQ

. U W A W
¢ ’ i) . o
f‘) ?i.\.ﬁ- ¥ !“ P “'n“"c‘!'\

g N y Y ™ » O\J 0 ’ o . ; . 5. "2,
4 ¢ OOOOONO LN
"':"’.'z o "\ !J‘Q"h‘. A‘:‘h‘?h"h"‘ﬂ‘"»‘!’A‘?‘.”‘A"‘n.-0:.,' N !‘.‘";1 i, a‘!'q'-'o'.':‘.’ Ny

30

), P(‘¢;(; -
» ’




Ras Bal Aol Rad L.t ““'“.ﬂ

An additional cleanup item is to resolve ambiguities in the
diagram. One such ambiguity is whether the diagram represents
sum(s) divided by count(s) or count(s) divided by sum(s). Of
course, the former is what we want and the ambiguity can be
clarified by sequencing the flows into the process "div." When
you select the "Sequence®” command, Van displays the prompt,
"Select the process to sequence.” Select the process "div."

Ldi ting: Medified
Options: Add Clear  Delete Fetoh  Label Move  Print

Quit Save [Sequence] Titie Zoow-in Zoom-out

Nessage: Seleot the proocess to sequence.

div average(s)

1r 31

> ‘2 « o C, v o« oo Cy
R P R RN, SRR Ny - L SRR ST U SO e P A AL A L .
ML e L g e Necpandinades B A N S A T D NP RN

» WYY »




After you select the process "div", Van prompts you to
select the flows into the process "div" in the order that you
desire. You first want to select the flow from the process "sum"
to the process "div."

Ldi ting: Medified
Options: Add Clear Delete Toetoh Label Move Print

Quit Save l’ltlo Zoon-in Zoom-out

Message: Seleot the flows into this precess in onder.

average(s)




T

Then youwant to select the flow from the process "count" to
the process "div."

Cdi ting: Modified
Options: Add Clear Delete Fetoh Label Move Print

Quit Save Title Zoom-in Zoom-out

Message: Selaot the next flow element.

/ 4)

v 5ol SRR S S S a St S



- g o S - g R A 4 bt _Balt Balt Sat Bot e et Bat Rt Rt byt Riv'

N

3¢}

;

:¢ Notice that as you select the flows, Van displays the

Q sequence number on the flow so that you can see the order you

K have specified. Now that you have sequenced both flows, cancel
the command by moving the cursor into the menu area and pressing

- any button on the mouse.

Now that you have completed the data flow diagram for
"average(s)", you can use the "Clear®™ command to start on the
other two diagrams. The "Clear" command will remind you to save
the diagram before Van clears the screen. The diagrams for
"sum(s)" and "count(s)" are created in the same manner as dis-
cussed above.

e v's"nla%al

E S

ﬂ
o Editing: sun.dfd
»
: Options: Add Clear Delete Tetoh Label Move Print
2 Quit Save Sequence Iitle Zoon-in Zoom-out
. Message:
Ll
g >3
; v
.). _-..
o 3
P
K1 Q -
=
o
. {
o sun(s) E‘:
s . 5]
ﬂ. “ v
» %
Y :‘t‘:
A
> BN
Neh!
.
? S,
E\ : b:"r \
S LS,
:' uﬁ\- X
[ N L8 A
" w1y
! =g
% S
A "X
. i 2
. T
» N .,-
¥ #
34 »
o Fo
- ..\ “

A R L P

CERTT AR RRI A DA RTR XA RR S CRINT - L AR PRSC TR CSET, RN TN, AN T S e e e AT S LA T
o e e L e R e T R R e A e S L S T Ay e e

-, " -
PN




e s ———————— wey e aah Al bR oad o T OO TR O T R T Y T T TR YT

Lditing: oount.dfd
Options: Add Clear Delete Tatoh Labe} Hove Print

Quit Save Sequence Title Zoen-in Zoom-out
Message:

tduce(inop)

/‘” \\\-/ oount(s)

il

LLASYY

\w

SRR R e




Since you now know the file names for the diagrams of
"sum(s)"” and "count(s)", you want to specify them as source file
names in the diagram for "average(s)." First, you need to fetch
the diagram for "average(s)". When you select the "Fetch"
command, Van reminds you to save the current diagram first if you
have not already done so. When the current diagram has been
saved, Van prompts for the name of the file to retrieve. Once
you specify the file name, Van clears the screen and displays the
diagram for "average(s)."

Edi ting: average.dfd

Options: Add Clear Del Label Move Print
Quit Save Sequence fitle Zoon~in Zoon-out

Message: Seleot cormmand.

N

average(s)

......




Now select the "Label” command. Van prompts you to select
the element to label. Select the process "sum."

Lditing: average.dfd

Options: Add Clear Delete Fetoh novo Print

Quit Save Soquence Title Zoon-in 2oom-out
Message: Seleot the elenent to ladel.

(8§

2 div

average(s)




| o Ginalaioai A e Aol i d ot g A Ma e o PTY T T WO C P TV T W O VT WU WTWI™ W WISy " (5 %~ 7=~ - - - e p e ow o - -

Van then displays, "Enter label: sum.“™ Since you do not
want to change the name of the process, respond by pressing
Return. Van will then display the prompt, "Enter source file

name (filename.ext):" for you to enter the source file name for
the diagram of "sum(s)."”

2R 5

P RS WA |

P>

Edi ting: average.dfd Insert OFT
Options: Add Clear Delete TFetoh @ Move Print
Quit Save Sequence Title Zoom~{n Zoom~out

Message: Enter source file nawe (fllenane.oxt): sum.dfd

3

(2 average(s)

SR R, AR R



You can store the source file name for the diagram of
"count(s)" in a similar manner.

_ Now that both source file names have been specified, you can
u travel from one diagram to another using the "Zoom-in" and "Zoom-
& out" commands. For instance, if Van is currently displaying the
N diagram for "average(s)", and you want to view or edit the
o diagram for "sum(s)", select the "Zoom-in" command. Van then
N prompts, "Select the process to zoom in on."

L=

/ ";.

0

1]

! ;

Editing: average.dfd
Options: Add Clear Delete Fetoh Move Print

Labe)
Quit Save Sequenoe Title Zoon-out
Message: Select the process to zoom in on.

1§80

average(s)
")-Q

R AR S RN LR T TN N T
- PP A AFE RS
TR PN YW IR

Tt B Y RO
T OE G IR S W PV e il al

SRR T LN TN T el



If you select the process "sum", for example, Van will
> display the diagram that defines "sum(s)."

Editing: sum.dfd
Options: Add Clear Delete Tetoh Label Move Print

Quit Save Sequenoce Title Zoon-in Zoom-out
Ressage: Seleot ocommand.

: :-' o -——q_‘(l

’l
e ,/”’(2) duca(®+™) suncs)




You can print any of the three diagrams, with or without the
sequence numbers on flows, with the "Print®™ command and save the
diagrams for future use by selecting the "Save" command.
Finally, you exit Van by selecting the "Quit" command which will
return you to the operating system.




L as g lad oy i & @on cod Aol Bod So2 M o4 Bl Aol ok ok el el Ak bk et gl i

b 5. EXECUTABLE DATA FLOW DIAGRAMS

" In this section we describe how data flow diagrams created

" using Van can be compiled into executable code. First we discuss

; the problems of interpreting ambiguous data flow diagrams and the

A solutions we have devised. Then we describe the procedures for
compiling and executing data flow programs.

Ambiguitites in Data Flow Diagrams

To compile data flow diagrams into executable code, the
", diagrams must represent well-defined functions. Unfortunately,

data flow diagrams often contain ambiguitites that would prevent
their automatic translation.

b
2 One source of ambiguity is the order of inputs to a process.
o For example, the diagram in Figure 5-1 could mean "a-b®™ or "b-a".
e The data flow diagram compiler, not knowing the desired order of
inputs to the process, will arbitrarily order the arguments for
3 the subtraction. Hence, any time the order of arguments to a
ok function is important, you should use Van's Sequence command to
’.‘_j; specify the required order.
.. N A second source of ambigqguity is that data flow diagrams can
describe processes whose results depend on the timing of input
e and the speed of subprocess execution. This can occur when two
.;{-; or more processes share a common data storeas shown in Figure 5-
o 2. In this example, both Process_A and Process_B can read and
fj-.:; update the shared store at any time, and can easily produce
different results with the same input data if process timing
. changes. We solve this problem by not allowing data stores to be
e shared. Fortunately, this does not restrict the specification of
‘..;' programs that implement well-defined functions.
\o
N
VO
s
e
e
A )
AR subtrast a~bh or b~a ?
Mo \
B
a‘.‘. v b
KN )
...|..l"‘
R
E'i"' 4 Figure 5-1. Ambiguity in the Order of Arguments
() s
Rk
2 43

e e P e e W e
AT J, " ‘ R R A LR LA AR AN y\ﬂ
B\ A AR T WK 1 A 03 A~y i) DALY 4] A




AUaMARARELLE L AR AL LR SR IR N SRR Gl abict e W

laput_A output_A
Shared_Store

Input B Output_h

Figure 5-2. Ambiguous Process with Shared Data Store

Representing conditional processes in a data flow diagram is
another source of ambiguity. The usual approach is to show
multiple output flows to indicate conditional data paths, zero or
more of which may be taken based on unstated criteria. Even when
the branching conditions are specified, the compiler can run into
difficulty trying to merge conditional flows back together. The
convention we use is illustrated in Figure 5-3. It consists of a
process labelled "if" which has three ordered inputs: the data
flow for the condition (a true or false value), the data flow for
the result if the condition is true, and the data flow for the
result if the condition is false. Thus, the value on the output
flow of the "if" process depends on whether the condition is true
or fa.se.

condition
1)

then_expression
/(

else_expression

Figure 5-3. Representation of Conditional Data Flows

J
44 ]



- T Y| T T Y Y W Y TR T T T W T T T N T R Y T e v
TR R TR TR TR T RTTSEFY

The current version of the data flow diagram compiler also
requires adherence to the following conventions:

o Each data flow diagram should have only one output inter-
face. This interface should be labelled with the function
name and its list of formal parameters. (The title on a
data flow diagram is ignored by the compiler and, hence,
cannot be used to identify the function being def ined.)

o All data flow diagram text should correspond to Ernest where
clauses. That is, data flow diagram text should begin with
the keyword where followed by an Ernest definition.

o Built-in operators, which are listed below, should appear in
double quotes when used as process names.

" naw "y "_n "/
"/an "% (cons) "<" S "o
"y ">=" "“" (concat)

"if" "mod" "|" (or) "~* (not)

Compiling and Executing Data Flow Diagrams

The first stepin compiling a data flow diagram is to derive
an abstract syntax tree for the expression represented by the
diagram. This is accomplished by a program called "Vincent." A

sample command, which will create the abstract syntax tree for
the function "average" is:

A> vincent average.dfd average.ast
The second step is to convert the abstract syntax tree into
the low-level code understood by the run-time interpreter. This
is accomplished by the second pass of the Ernest compiler,
Ol iver2, with the command:
A> oliver2 average.ast average. hbc

Since each data flow diagiam specifies only a single function,
this process must be repeated for each ".dfd" file.

The top-level diagram of a program must be handled slightly
differently, since it represents an expression rather than a
ot function definition. The translation process is exactly the
A same. However, the low-level code for the main program must be
" the last segment of code loaded by the run-time interpreter. To

5 ensure that this code appears at the end of the file, we do not

create a ".hbc" file forit. Instead, we use the file extension
".top", as in:



=%

e

o'

A> vincent mainprog.dfd mainprog.ast
A> oliver2 mainprog.ast mainprog.top
All of the ".hbc" files and the ".top" file must then be
collected together into a single file for execution. The follow-
ing command combines all the ".hbc" files in the current direc-
tory and the ".top" file into a single file called "mainprog":
A> copy *.hbc+mainprog.top mainprog
We can now run the program by issuing the command:

A> sherbert mainprog

46

W X

*un n . - T - » - - T T .- -
) "g o, \ RS 1 h
'\"l"»‘t‘;.-‘. |‘?\'4‘|9 1“"\*‘!'{% 5 \'ﬁn AN TG Y .0'*0 rh :"ei\ - L g .! ¥ N " ole; by




%? VAN QUICK REFERENCE GUIDE

Lk

Wy

__‘r. Add -- Add a data flow element to the current diagram.
?ﬁ Addflow -- Add a data flow.

\;%’ Addiface -- Add an interface.

'M' Addproc -- Add a process.

E'::“: Addstore -- Add a data store.

E’%‘:’: Addtext -- Add data flow diagram text.

o End -- End the Add cammand.

.\;‘«; Clear -- Clear the screen.

::'" Delete -~ Delete a data flow element from the current diagram.
Yot

Fetch -- Retrieve a saved diagram.

::, Label -- Add or Edit a data flow element label.

i:“| Move -- Move a data flow element.

all Print -- Print the current data flow diagram.

::)\-?' Quit -- Quit the editing session. Exit Van.

at

s .p?_i'; Save -- Save the current data flow diagram.

‘. ‘ Sequence ~- Sequence the flows into a process.
o

gﬁ%@ Title -- Add or Edit the data flow diagram title.

.E:':{?{:’;" Zoom-in -- Move down one level in the diagram.

Zoam-out -- Move up one level in the diagram.

<,

< T O ' LSt bt Lol R R R g - R e R S O S A R S AP
..’;. ” 500 TN OL0 > ) AGH iy re ) 2y, )
A g A e e N AT N A Y " A

A% R e ™ W 48 LRt N




TWIrWOrY W W ERY Y Y YW TN TRTN S Bk RAas S g S o8 Soh Aab Sk Aok Aot et et Jak A

Annex C. APPLICATION PROGRAMS

o

T R PR aT Y o Ly ' RO R NN
e . ﬂ"*‘"é-‘.&fﬁﬁitﬁl'm ey



T R T T T T N R R P T S T D R T I N A T R e R T T PO Pe N TR W T Fe 7 X T W WOV R 07 ™4

HUMAN FACTORS DESIGN EVALUATION TOOL

Reginald N. Meeson, Jr.
T. Patrick Gorman

Computer Technology Associates, Inc.
7501 Forbes Blvd., Suite 201
Lanham, MD 20706
301-464-5300

Abstract

A sizable application program (1700 lines) written entirely
in the functional programming language Ernest is described. The
application is an interactive tool for analyzing the effects of
automation on personnel at a NASA ground control center, and is
based on a human factors model of job activities. The functional
organization of the program is discussed and several examples of
function definitions and data structures are presented. Ernest's
function-forming operations allowed us to abstract and partition
the problem in a logical and natural way. The techniques of
functional programming which have been illustrated in much
smaller programs worked equally well in this larger exercise.

Introduction

This paper describes an interactive tool designed to analyze
the effects of automating job activities on personnel and opera-
tions at a NASA ground control center. Changes in job activities
due to automation can have both positive and negative effects on
personnel and overall system performance. Hence, analysis of
such effects can be valuable to help guide system evolution and
to safeguard against having to correct for changes that impair
performance.

The analysis is based on a model of human factors attribute
associated with personnel functions and tasks that support groun
control system operations [l]. The model partitions systems int
the hierarchy of components outlined in Figure 1. Each componenty
in this tree structure has a set of attributes. At the leaves of{i
the tree, the attributes are directly measurable, quantitative
characteristics of a human-computer interface. At other node s
the attributes are derived from the attributes at lower levely
and are usually more qualitative in nature. At the root nodej
therefore, the attributes represent an overall qualitativ§
assessment of the system's demand on personnel and its effects o)
personnel performance. The attributes at each level in th¢
hierarchy and their dependencies are shown in Figure 2. \

.‘ M
. " am r W LTS WA
EM)

DL LA o P ML e Lo c O L0 4 (O LY AT I N R SEEE AR )
NSNS IOCOR - ) ."m“.%‘.h,q)s‘ ._.h.h\?! KR A,.-.l AT WY o u‘&.‘.h &.‘5.2*“\" a3 i SRR AN A WS DN




Moo o PO T WW WY OV W T DA TR T T TR R T T WY W W T W

AL
i
n)
i
v
k) N e e T e e i e o T o — " S S e Tl S e s (i S S — L — e ————
)
f‘n
'y
SYSTEM NCC
1)
S
¥
* -h
.
%
N
Py TDRSS
w ggg':::;:““‘ ceoe NETWORK cee
CUONTROLLER
B
) \
.
A
B> MONITOR
N, PUNCTION ™ ese
K PERPORMANCE
W /
0
..'::"(
NS MONITOR
a'i TASK STATUS o e 0
Joed REPORTS
[ ] 1,
LA |'.t
:' . / \
'.‘"f:.
e INTERPACE PAST ACCESS STATION DATA
M INDEX OPERATIONS
.-\"_-.‘
Fiqure 1. Model Personnel Functio: s and Tasks
L)
SR
AR i e Uy LSy,
S
A
f-,_k‘ OPERATIONAL COGNITIVE DEMAND
My POSITION
i)
e
e
o)
::p :q:::o: PUNCTION MENTAL EPFORT
CLAX]
N ""‘
‘\':‘I'v’t‘:‘
P
i ":5-‘\‘ TASK DECISION " visOaL AUDITORY
:“:ﬁ: MARING PERCEPTION PERCEPTION ATTENTION MEMORY
13V NS
Y
AR
e
o
Ph ORI
RGCE INTERPACE DECISION SCREEN CoMM INFO TYPE IMMED TYPE INFO REG
;:-}-::’5‘: LEVEL voL INPUTS CATEG OF OF OF car oF
AN DISPLAY DATA DISPLAY OCCUR
RN TRANSPER
KRG . . . . |
f:ﬂ'.‘f,ﬁ A Figure 2. Attributes Associated with Model Components
() Wy ".
N | S ——— > ——— — " —— " o ———— - — . — S - — G > W . - G T S W G G S G Y T S . G G e D G G S W . — |
PRty |
A,
-y l.l 2
- _ﬂ.
"
¥ ‘_J-

i « Y RN LR, B

WA, Y PO IT AN A L S L '-('u’.'\':—jﬂ :gzg;ﬂz‘;‘;: ERVRLHIN
-‘l"v..la't.la UL S S W b, "( y A ue‘ J’h A u‘t’n’ i N " ,.& .&&f&‘f_&*



e

. The Design Evaluation Tool allows a user to move around

g within this model and display information about the hierarchical

:\ structure, the vaiues of attributes, and the contributions lower-

Vo level nodes make to attributes at higher levels. In addition, a

) user may experiment with changing attribute values at leaf ncdes

Pie. to investigate the effects of changes in work activities on

f?ﬁ personnel and system performance. Examples of the two principal

£t types of displays produced by the tool are shown in Figures 3 and

Ol .

al c

o The Program

]y

%b The Design Evaluation Tool is implemented entirely in the
>~ functional programming language Ernest [2]. The program consists

Ve of approximately 1000 lines of function definitions, plus approx-

imately 700 1ines of data structure definitions which form the

g;f model of human factors attributes.

Sy

‘,3: The top-level organization of the program has the tradition-
~ al input-process-output structure shown in Figure 5. The first
e function, "make_codes", filters the user's keyboard entries and
. passes a command code to the next stage for each user entry. The
?{} process part, which contains the function "next_state”, imple-
o ments a finite-state machine that produces a new state in
55 response to each input command code. On the output side, the
b function "show_state” displays the current state on the user's

" terminal screen.

< T e e e e e e —— - ———— — ——— — — — o —

“
AT
oY
-

5
4 -l_
H_:-" Furction: Monitor TDRSS Network Performarnce

e,

" To exit, enter ~C.

a3 Toa praceed, select an action from the list below:

w

hth .

P, 1. Mave to Task: Monitor Status Reports
5 _;\, . Move to Taski Maintain Position Log
W 2. Maove toc Task: Manitet/Control GCMS

P. Display the Profile for this ncde.

“"‘_ R. Return to the previous screen.

.

P

A

w.,.:, '(-'
o N
:
. . =
,Eq Figure 3. Example Menu Node Display R
")
J':'- ------------------------------------------------------------ c:\
e

:: b
0 l. 3 )

¥F

o o
I .. . AN
'f, . € ;;:-f\;vl.‘\(\‘-‘q\ .'I‘ .q_'.r 3 .J-h,:r- (:;‘l;‘-j"-'(\:.\j‘-l‘. “a Ta -: A ':. -; - . -(‘.‘-!‘ ; '..':‘ d

'» Wy " )



TP ET W INTTTETTrwTowyreerrtoewy b hanil ass ath md ek Blh o 4 m a ac i a ol B X & g Al i A G A A B Sl Ao ol Ao Aol Lo B k& R Lol

NY
i
o
)
b2y
e Profile for Task: Monitor Status Reports
t
o8 o 10 20 30 40
:".( A. Time (mins.) T EEEEESNEEETTTSNRTITISIAIRTISS
L e
B. Decision Making TSR] | TESE RIS NOIRTIII ISR TSSIT
NN e ———— et e ———
> C. Visual percept ion TS FSENIATTIITAITRT | STTTFTITTITIBIITSASRTE
S ememmemmm—c——e— e e e
; D. Quditory parcept iton SoESTTITITTIIII|=S===
s mmmmToooosoo——oee———— |
L L/m M M/H H
‘\: Demand ! is recommended; = is baseliney - is trial modification.
oy
,,Q'_: To exit, enter “C. To return to previous screen, enter R.
o
. To proceed, select an attribute for analysis or modification.
&
>
|} ‘:..’-
3
. N . .
,-.3 Figure 4. Example Profile Node Display
T o
" -
':'.r'_\'.
B
Ny
a’.'n o
'.;.“ //-—\\
! }. R —_—a
X %
‘;.. Mg input wake_codes next_state } show_st. te output
N
:!‘l" % A ' \ // //
| v -y \HJ
e
i
12N
; (.,:;E /
““*1 cur_state
Yt ———
)
'R
""'.v..-l'
-r,w-r"

57908 Figure 5. Top-Level Program Organization




Vw—wmmvvmwwmmmwmm'wv\ww“ﬂ NTARCTRTTRTTR TR R Y -T

Data Structures. Before we say more about these functions
we must describe some of the data they operate on. For each of
the nodes in the model there is a menu node in the program
database. Each menu node contains a tag field indicating that it
is a menu, its name, a list of its offspring, a list of its
attributes, and a function that computes its attribute values
when applied to its offspring. For example, the menu node for
the task "Monitor Status Reports" is:

MSR_menu = < 'M', 'Task: Monitor Status Reports',
offspring, attributes, task_attribs >
where offspring = < <'1',FAI menu>, -- FPast Access Index
<'2',SDO_menu>, -- Station Data Ops.

<'P',task_profile>,
<'?',nono_msg> >

and attributes = task_attribs (offspring)

Since the attribute function is the same for all tasks, the
function "task_attribs" is defined globally. In addition to

subordinate menu nodes, the offspring include a profile node and !
a text node.

Prof ile nodes are not described in the model but are re- 4
quired in our finite-state machine paradigm to allow profiles of

atgributes to be displayed. The definition of the task profile
node 1is:

3

"r'r ¥ '.

task_profile = < 'P', 'Task Profile:', offspring >

where offspring = < <'A',task_A_detail>,
<'B',task_B_detail>,
<'C',task_C_detail>,
<'?',nono_msg> >

PR b .1 o
“a '

*

=

Profile nodes have offspring which are detail nodes. Detailled

nodes allow us to display the contributions made by each sub—23-

ordinate node to a selected attribute. S

e

The "state" of the finite~state machine part of our program.>

is alist of the nodes that lead from the current node back up tc¢
the root of the tree. For example, if the current node is thd

profile node for the model function "Monitor TN Performance™ .

then the state would be represented by : ;ﬁf
Sl

cur_state = < func_profile, -= function profile node fﬁw
MTNP_menu, ~- Monitor TN Performance ip

TNC_menu, -- TDRSS Network Controlleryoyg

NCC_menu > -- Network Control Center i




Y T WY TRy Y RO T W T MW MM Y M WY WM YR mcmeremete cm = = — - _ L
L Ade Al —adoe i SaR e il S e S et ot ad - o8 Sl S oh 3 o)
.

~1N
3
e
20 Function Definitions. Space does not allow us to show every
t:'.-' detail of the program, so we will attempt to describe only a few
> key functions that illustrate program construction using func-
) tion-forming operations. All of these examples were taken
o directly from the program and are compilable definitions.
o The heart of this program is the finite-state machine shown
fed in the center of Figure 5. Given the current state and an input
" command code, the function "next_state™ produces a new state
Wy value. That is,
‘o new_state = next_state( cur_state, cmd_code )
A
)
,‘::Z We use the "scan" operator to construct the finite-state
&Y machine. "Scan" is the function that produces the sequence of
all its partial results as it consumes its input. 1In this pro-
e gram, the partial results are the individual state changes
N directed by each input command code. Hence,
e
_t:.;:g state_stream = scan( next_state, init_state, cmd_stream )
'I.
- R is a stream of state values startingwith the initial state and
-_:.--_‘_j containing every intermediate transition. The initial state is a
b list containing only the root of the database tree structure.
SRR
‘\.‘\l . 0] (3 "
o The definition of "next_state" does not use function-forming
s operations, but it does show how the program state is manipulated
and how functions may return large data structures as results.
:;{-;;:-; next_state( cur_state, cnd_code ) =
S if omd_code = 'R!
w then -- return to parent node
el if parent_state = <> -- cur_state = <root>
r then cur_state
o else parent_state
-}:-",:J else if node_type = 'M' | -= a menu node or
T node_type = 'P' -- a profile node
sy then -- add the selected offspring to the state
220 select_offspring(cur_node, cmd_code) : cur_state
- else if node_type = 'T' | -- a text node or
S node_type = 'D' ~- a detail node
N
i"?‘"; then -- return to the parent node
NN parent_state
._ﬁ;.,& else if node_type = 'U' -- an update node
IR then == produce an entirely new state
asa gl A update_state(cur_state,cmd_code)
;.;-_.:~,’j{ else -- error, replace node with error message
(o e oops_msg : parent_state
HETALLN
:'{:::;::-’L: where cur_node : parent_state = cur_state
LSS
.y y and node_type = head(cur_node)
ST
‘;Z-. Sy and oops_msg = <'T', <'Oops! Unrecognized node in tree'> >
A Syl
'\."':::_-‘.J
M 0
". EA ") 6
s
ﬁ:‘.::.:;
b I 0 i o i e e e U e S e S




-
P
1 e 1
) Qb |

13

B

]
a’a’,

22

P
o

N

P Ay b § bt
I

Selecting an offspring from the current node requires match-
ing the command code with an offspring node's selection key.
This function is defined by:

select_offspring( cur_node, cmd_code ) = new_node
where <key,new_node> = first(match,offspring)
and first(pred,seq) = head( filter(pred,seq) )

and match(<key,node>) =

key = cmd_code | -- key matches command code
key = '2! -- or the last element

and <type,offspring,name,attributes,attr_func> = cur_node

The first node that matches is at the head of the list of

all the nodes that match, which we produce using the "filter"
function-forming operation.

Since Ernest has no assignment statements, we cannot update
attribute values in place the way we can in conventional lan-
guages. Instead, we must produce a new state with appropriately
reconstructed nodes. (Assignment statements over-simplify the
drastic nature of global state transformations. In this program,
for example, the effects of attribute changes ripple all the way
up the tree structure. Hence, a simple assignment would leave
the program database in an inconsistent state.) Updating a menu

node consists of replacing its offspring and recomputing its
attribute values:

update_menu( parent_node, new_child ) =
< 'M', new_offspring, name, new_attribs, attrib_func >

where <type,offspring,name,attributes,attrib_func>
= parent_node

and new_offspring = replace (new_child, of fspring)

and new_attribs = attrib_func(new_offspring)

The function "replace"” substitutes a new child in the 1ist”

of choices that make up a parent node's offspring. It is defineds

recursively by: \

replace( new_child, choices ) =
if choices = <> then <>
else if new_name = first_name
then -- insert the new child here ,
<key,new_child> : rem_choices )
else -- keep the first child and replace the rest o
first_child : replace (new_child, rem_choices)

:
9
\
>

i AN




\J,‘
.\..
2} where <new_type, new_ of fspr, new_name, new_attrs, new_func>
O = new_child
‘o and <key, <first_type,first_offspr,first_name,
N first_attrs,first_func> > = first_choice
.
o and first choice : rem_choices = choices
BN
A et
" At the bottom level of the tree, a new node with new trial
oo attribute values is constructed by the function "update_trial.”
d" This produces the first new menu node to be replaced in the tree
5 structure. All of this child's ancestors -- back to the root of
AN the tree -- are in the program state. This leads to the follow-
ing definition:
(W) |
Wy update state( cur_state, cmd_code ) =
} update_node : profile : new_ancestors
A
VR RY
g’,:._ where update_node : profile : first_menu : ancestors
N = cur_state
SIS
,j::jj:: and new_ancestors = reverse( reduce (build_state,
S Kfirst_new_menu>,
N ancestors) )
-

and first_new_menu = update_trial(first_menu,attr_code,
cmd_code)

and <type,attr_code> = update_node

\ The function "build_state" takes a list of updated children

P and the next parent node in the tree structure, forms a new
N parent node with the newest updated child substituted in its
o offspring, and adds the new parent node to the list of updated
g children.

ST build_state( updated_children, parent ) =

-.-»-.:C{'- new_parent : updated_children

-_':y- ._1"-

::Z-'_:.'-.-' where new_parent = update_menu(parent,first_child)

Y

- and first_child = head(updated_children)

A

~ Applying "build_state"™ successively to each ancestor in the
\.‘:,-:‘ state using the reduction operator constructs a new updated state
AL

-~ but with the elements in reverse order. The function
"reverse" rectifies this:

reverse = reduce( rev, <> )

where rev(seq,elem) = elem : seq

et \‘:
':"."‘ " 1.9* ‘u(' '

A M

Y ) r?“i"!*{“ I




el The states produced by "next_state™ are passed along to the
Sty output formatting function "show_state®, which is defined by:
gt show_state( cur_state ) = _
R screen( if node_type = 'M' then -- it's a menu
el show_menu (cur_state)
ity else if node_type = 'P' then -- it's a profile
e show_profile (cur_state)
else if node_type = 'D' then -- it's a detail
:qﬁ show_detail (cur_state)
oy else if node_type = 'T' then -- it's text
fﬂ show_text (first_node)
1240 else if node_type = 'U' then -- it's an update
R, show_update (cur_state)
else show_text (error_msg) )
0t )
Qgi Each of the subordinate "show_..." functions produces a
o sequence of lines to be displayed, and "screen" centers these
B lines vertically to present a clean display.
g Finally, the program output is generated by mapping "show_-
K< state” across the sequence of states produced by the finite-state
e machine:
1N
‘}fg map( show_state, state_seq )
by
ﬁ& Conclusion
hatty
ﬁhﬁ We have described a sizable application program (1700 lines)
q&ﬁ which was written entirely in the functional programming language
_ Ernest. The success of this project was due to several factors.
S Ernest allowed us to abstract and partition the problem in a
g logical and natural way. Ernest's function-forming operations
I and the absence of side effects allowed us to build and test
‘W component functions independently and to combine them into larger
Q@; components with ease. The same techniques that we used in
developing smaller programs worked equally well in this larger
T example. We also found that program bugs were quite easy to|
Sy isolate and repair, primarily because they were found early in.
’5& testing small components.
Yy
5%
A References
.

o

£

l. Sheppard, S., E. Murphy, and L. Stewart, "A Methodology for

A J Assessing the Human Factors Impacts of Increased Automation'q

R Proc. Human Factors Soc. 29th Annual Meeting, October, 1985,x

AN pp. 556-560.

i 2. Meeson, R., Erpest Functional Programmipg User's .Gyi.d.ef;
n Computer Technology Associates, 1986. ;

4ad :
l.|'l' "

- T i T g 0 O GUULAT LN IC 0, Syeos 1% N R A A U TR SOy
'-’l‘!'l‘. A !"‘n'l" .n, .l < ) * . '.' W * 4 ',"f "‘ % . .r\l‘ 4 > ""} otk N “‘r\‘ “D“.‘i‘l‘.ﬂ‘r ,'.’.".‘;‘te‘!‘lh M“t."l:l -'Q' k4




R

R

g

:i‘l

..:0

’;;:

B

5, TYPE CHECKING IN ERNEST

)

Eﬁ:: Michael B. Dillencourt

g}:; Reginald N. Meeson, Jr.

;:.l

) Computer Technology Associates, Inc.

o 7501 Forbes Blvd., Suite 201

o Lanham, MD 20706

5:5 301-464-5300

s

»

bels

)

oS

b2 Abstract

:'.;;'}: A prototype of the type-checking algorithm used in the
e functional programming language Ernest is described. This
W prototype was implemented in Ernest as part of an exercise to
e evaluate the language. Since Ernest requires a minimum of type
"?Q declarations, type checking requires deriving a function's type
o from its definition, as well as verifying that each application
‘:’-b:‘ is consistent. The type checker supports polymorphic functions

and derives the most general interpretation of each function's
S type.
"t

SO
4 f:i::: .
K Pade Introduction
ey
“' The goal of type checking is to ensure that functions and
e operators are applied only to arguments of the correct type. For
:.:.:::::, example, it isvalidtoaddtwo numbers, but it is not meaningful
n_-_-. to add a boolean value to a string (or to another boolean value).
_-::,' In this paper, we discuss the approach to type checking in the
.fg,..g:h functional programming language Ernest [l] and provide an over-
' view of how our type checking algorithm works.
$:'j Most conventional programming languages support type check-
ot ing by requiring programmers to explicitly declare the types of
-’xj all variables, procedures, and functions. This makes type check-
,:.: ing a simple process, since all the type checker has to do is
S verify that the use of each variable is consistent with its
<3 declaration.
[} '\-..:?
‘v*i The philosophy used in Ernest and in a number of other new
| o programming languages is that the type of function arquments and
A w.j. returned values should be derived or inferred from the function's
A definition. Functions, therefore, do not require explicit type
T declarations. (This philosophy extends to procedures and vari-
rrvoe. ables in procedural languages.)
L
el
WY,
¢ '\ ?' 1
[
‘::tﬁ::'\‘“;:.
R,

DAl
C.“':u .‘.7



. '\T - WP T RPRT R rRpreny T TV TR T IR TN TR TN TR TR ‘"""—'“»‘\"’"""’»"‘".'-i‘"Y-W“““m‘m“!"‘:‘"‘“““\"I‘
N
v
TN
Il
Y
P2t
':5 An important concept that arises in type systems is that of
Y polymorphism. A polymorphic function is one that can be executed
for arguments of different types, such as the following function
) to compute the minimum of two values:
Jed! define min(x,y) = if x <= y then x else y
‘-\"b
?t This function is polymorphic because it can take two arguments of
any type for which comparison is supported (e.g., integers or
. strings). Thus, both of the following calls are valid:
g
9
3? min('a','c') ~-- returns the value of the smaller character
?;; -- (according to the ASCII collating sequence)
3333
o min(23,15) -- returns the value of the smaller integer
;Hg Most conventional programming languages fail to support poly-
Bard morphism, although Ada (2] provides a restricted form through
-h' "generic"” objects and by "overloading®” function and procedure
E«. definitions. Ada's approach, however, requires more, compl icated
et declarations rather than fewer, simpler ones.
_;t Another important concept in type systems is the notion of
N type equivalence. 1In Ernest, types are equivalent if they have
5;: the same structure; that is, if they are the same basic type or
o if they are built from equivalent components using the same
w construction operations. Other languages such as Ada have
N “stronger®, more restrictive definitions of type equivalence
e which require more elaborate declarations. The weaker form of
e structural equivalence is required to allow us to derive anony-
- mous types for functions.
T Types in Ernest consist of type expressions built out of the
é? following types and type construction operations:
¢
Ly ™
5§ 0o Basic types, which are integers, reals, booleans, char-!
o acters, and strings. :
\
L) . .
e 0 Mappings, which are denoted by the symbol "->" and represent?®
gy the types of functions in terms of the domain and range
,(? types. Thus the logical negation function """ has the type t
= &
:? boolean -> boolean
= A slightly more compl icated example is the function "+
= which takes two numeric arguments and returns their sums
R Its type is o
=
s (nunber x number) -> number
3% 3
’ o
o The Curried interpretation [2] of this function, which i
Fore the interpretation we use, has the type
-,
e number -> (number =-> number)




}f o Sequences of objects of a given type. For example, strings
N are sequences of characters.
string = sequence (character)
"%
jf o Type variables, which are used to describe the types of
AN polymorphic functions. These are denoted by Greek letters
i; (written "alpha", "beta", etc.). For example, the function
e "min®", defined above, is of type
;;’,& alpha -> (alpha -> alpha)
B
3&‘ where "alpha®"™ can be any ordered type. Similarly, the
iy function "head", which returns the first element in a
o sequence, is of type
'ﬁﬂ sequence (beta) -> beta
L)
'$;~ o Error, which is the type of any expression that contains a
YN type error. For example, the expression
.‘ -
Lt 3 + 'blind mice'
l.'
Q : is of type "error", since a number cannot be added to a
Wnth string.
1\\':0 4
Y
Substitution, Instances, and Unification
A

NI The algorithm for type checking in Ernest is based on the
it concepts of substitution, instances, and unification. More com-

o plete treatments of these concepts can be found in the literature

2 (3,4]. A substitution is a consistent assignment of type expres-

sions to variables within a type expression, yielding an instance
of the expression. Thus, "string -> string” is an instance of
"alpha -> alpha", but "string -> integer" is not. The first
expression is an instance because "string" was substituted for
both (all) occurrences of "alpha." The second expression fails
to be an instance because the substitution is not consistent.
("String”™ is substituted for the first occurrence of "alpha", and
"integer" is substituted for the second.)

Unification of two given type expressions consists of
finding a set of substitutions that yield a common instance of
both given expressions. For example, consider the following two
expressions:

string -> alpha
beta -> (string =-> string)

These expressions can be unified by replacing "alpha" by

(A "string -> string” in the first expression and substituting

oy "string” for "beta" in the second, yielding the common instance

-\'\:-.

‘ 3
FASNLLE
PR
-‘J..':.'::-'-’ @ e ¥ e e a® a e " aT a %" DR I T LAV SV U B AT S R AL SPIR LIS . G I AN SPIL S Rty AX g -‘\\‘ﬂ
Ras . ~.-‘,\- Do n ::"-\ ROASERR SN AR ::}:.'_-.',:.__::'_-.f:. """'\"."4‘-'{'::":"’:':C{:"":"\" 7 "‘,_:: o \ YO Aot




S ol - W TR WO o T e T e W T e T WO WO W W T werTw ey
“

o
o string =-> (string -> string)
:.;'.
R The following example shows two expressions that cannot be uni-
. fied because no substitutions of alpha and beta will produce a
;}::: common instance.
)
'::.E string -> (alpha -> string)
!‘I
" integer -> (integer -> beta)
i
W The Function “Unify"
i.’
{,‘:g,. Unification is easily defined as an Ernest function. The
a function "unify" takes three arguments: a list of substitutions
) "S", and two type expressions "m" and "n" to be unified. "s"
Ny represents all the substitutions that have already been made.
;}. Each such substitution consists of a variable and a type expres-
sy sion to be substituted for that variable. "Unify" returns a list
:.:1: containing two items: an augmented substitution list and a type
e expression. The augmented substitution list contains everything
in "S" together with all new substitutions made in unifying "m"
KN and "n." The type expression is the common instance of "m" and
{ ” "n® if one is found; otherwise it is the type "error."
?i:‘ We are almost ready to describe how "unify" works, but we
oW need to explain one subtlety first. We have to make sure that
. the substitutions we make when we unify "m" and "n" are consis-
> tent with substitutions that have already been made (i.e., with
Y those in "S"). This can be achieved by doing the unification on
1 the respective representatives "e" and "f" of "m" and "n" from
1 the substitution list "S." Thus "e" is the type expression
k. corresponding to "m" in "S" if there is such a type expression;
e otherwise it is "m" itself.
o
E: Unification works as follows. Representatives "e" and "f"
f,p',', can be unified only if they are the same kind of type expression
;:' (e.g., basic types, mappings, sequences) or if one of them is a
t variable; otherwise, unification is impossible. If exactly one!
s of them, say "e", is a variable, then the substitution list is»
'S4 augmented by the substitution of "f" for "e", and the common;
2, instance is "f." If the type expressions are of the same kind, |
ad then they have to be examined more closely. If they are both
A basic types, they can be unified if the types are identical;
X otherwise, unification fails. If they are both sequence or
mapping types, then they unify if and only if the constituentk
+3; types (i.e., the base types for sequences, the domain and range
,. types for mappings) unify, so "unify" must be applied recursively
<) in these cases. If both "e"™ and "f" are variables, then they car.$
:«.) be unified; if they are different variables, then the substitu-
ne tion list must be augmented to indicate that one variable ha g
— been substituted for the other. ‘_‘
"~$ The Ernest code for the function "unify" is as follows: :::.
33 N
4
% 0
R OB O o o o o o bt S N e e e e




TR TR T RS TIREE T MR T T T R T e

define unify( s, m, n ) =

-- Given substitution S, unify type expressions "m" and "n."
-- Assume type variables in "m" and "n" are distinct and
-- universally quantified.

' if e_kind = f_kind then
v if e_kind = basic then

if e_elem = f_elem then <S,e>
w else <S,error>
ey else if e_kind = seq then
Ry if u. elem = error then <S,error>
it else <S_seq,<seq,u_elem>>
A else if e_kind = mapping then

if u_dom = error |
o u_rng = error then <S,error>
XY else <S_rng,<mapping,rep(u_dom,S_rng),u_rng>>
ﬁ% else if e_kind = var then
A if e_elem = f_elem then <S,e>
o else <insert(<e,£>,S),£>

else <S,error>
else if e_kind = var then <insert(<e,£>,8).,f>
else if £ kind = var then <insert (<f,e>,S),e>
el se <S,error>

where e = rep(m,S)

a'; and e_kind:e_val = e
Jhe
-_E;‘, and <e_elem> = e_val -- for basic types and sequences
A o™ ,}l‘
%&.r and <e_dom,e_rng> = e_val -- for mappings
ﬁ?T' and f = rep(n,S)
ity
f i& and f_kind:f_val = £
N
QQQN' and <f_elem> = £ val -- for basic types and sequences
v*"‘ and <f_dom,f_rng> = f_val -- for mappings

I
.:-iﬁ and <S_seq,u_elem> = unify(S,e_elem,f_elem) -- for sequences
A
NS and <S_dom,u_dom> = unify(S,e_dom, £_dom) -- for mappings
y.a;; and <S_rng,u_rng> = unify(S_dom,e_rng,f_rng)
RN
ANL . - "
e, "Unify" calls two functions, "insert" and "rep. Insert
o "nﬂ returns the augmented substitution 1ist obtained by adding the
e substitution item "x"™ to the list "S." "Rep" returns the repre-
RERAR sentative for the type expression "e" in the substitution list
Qﬁ;ﬁd "S." 1If "e" is a variable, "rep" searches through "S" for the
’?iwﬂ type "e"; otherwise it simply returns "e", since only variables
Bk

Vel nl ke

R R A S E TR W YO SR SN R DAL TSl A A Ay .‘N:q L,
KPR TR ;*gfvi‘zfﬁ;i}i}:km}m v {‘s.ﬁﬂ" 'hﬁ'ziﬂiza ey,




Lo h o uod 4 A Zod

TV T w T T T T T TUw

are replaced in substitutions. The Ernest definitions for these
two functions are as follows:

define insert( x, S ) =

-- Insert equivalence pair "<v,r>" into substitution "S."

if r_kind=var then x:S
else insrcrt(x,S)

where <v,r_kind:r_val> = x
and insrt(x,S8) = if S=<> then <x> ;
else if r_kind=var then a:insrt(x,t)
else x:S
where <v,r_kind:r_val> = a

and a:t = §

define rep( e, S ) =

-- Find the representative of expression "e" in substitution
- list "S."

if e_kind=var then
if s=<> then e
else if e=v then rep(r,t)
else repf(e,t)

else e

where e_kind:e_val = e

The PFunction "Type_Check"

In the preceding section, we presented the Ernest code for *
unifying types. In this section, we give the Ernest code to do
the actual type checking.

.

L

We assume that the Ernest code is inthe form of anabstract;
syntax tree. Thus each expression has associated with it a
"where" clause (which may be empty) and is tagged to indicate
whether it is a literal, an identifier, or a function applica-tH
tion. We further assume that the function applications have beenbi
Curried (i.e., that the applications are to one argument). This-73
. is a normalization, rather than a restriction, since any function(]
’ application can be expressed as a sequence of Curried functioni;
applications. Thus, "2+3" is expressed as WEa

=N

o
<application, <application,"+",2>, 3> :;b
)

£

DR -P- --l.--ﬂ _‘- 0 e et ‘.-.~- > gw'\.c ..4 “ -.n - I‘q
ROT AL B0 AR IR NI SO N R




L B et 0t e g e aie uih olm ads Alh i ais akAcad wwwwvmwm

0
d
("
.'
;' The abstract syntax tree is built by pass 1 of the Ernest com-
I‘ pileto

There are two auxiliary structures that are necessary to
- support type checking. The substitution list, discussed above,
',(;j contains information about which type variables are bound to
j-‘ which types. The environment contains the types of previously

b defined identifiers and functions, and it also contains the list
N of "fresh" variable names.

:;:. We can now describe how the type checking function works.
. The input expression "expr" is split into its component parts
! "expr_part" and "where_part", where "expr_part"” is the actual
-r expression part and "where_part" is the associated list of where

clauses. The where clauses list is processed (as described

v below) to provide a new substitution list and environment :
ol "where_subst®” and "where_env." The type checking function is /
W split into three cases, depending on "expr":

‘\J.‘\

40N o If "expr_part" is a literal value, then its type is the type

W of the literal.

P

o If "expr_part" is an identifier, then its type is determined

?_-.-: by looking it up in the environment. The returned type is

AN an instantiation of the type (that is, one in which the

SN universally quantified variables within it are all replaced

S by fresh variables). This step is necessary because the

_ variables within the type definition of a polymorphic func~

-'{Z"{. tion are, in effect, universally quantified variables.

ol

‘{.:-.:. o If "expr_part" is an application of function "func" to
3 argument "arg", then its type is the type returned by "func"
NN when applied to "arg." This value is determined as follows.

J A fresh type variable, "new_vbl", is created to represent

X the type of the return value. Both "func" and "arg" are
Ca e Y . . .

,}‘,,.::, type checked, yielding respective types "func_type" and
5\;{.\:; "arg_type." The type expression "func_type" is unified with
e the type expression

Py

o arg_type -> new_vbl

e

e .

',.:c,': An example may help to illustrate this last case. Suppose
Ao that the application is "head(int_list)", where "int_list" is of
'*-! type "seg(integer)." "Head" is of type
-.".;-\:._'-:._‘ seq(alpha) -> alpha
':.f*.'.::' L] : . s
Sl If "beta" is the new type variable allocated, then we must unify
IR the type of "head" with
IR

' - seq(integer) -> beta

’l

Ko
o5 ::.'::;. The result of this unification is the substitution of "integer"
e for "beta."

" S
:4‘. "'
7
o A e e e e L A e S L P T L o A




]
-
.

-
-
-

.

-y

P T,
9 ’ I -

.
v &
s
-

z

A
T
- W e

i
“alel el

o
2

X

gl
o,
K

e ttes

k)
)
‘»

"o

[,

WY TR T

The Ernest code for "type_check" is as follows:

define type_check(expr,subst,env) =

"subst" and enviroment "env",
determine the type of the expression "expr."” The value
returned is the list <T,substl,envl> where "T" is

the type of "expr", "substl"™ is the new substitution |
list, and "envl® is the new enviromment.

Given substitution list

if expr_kind = literal then
<literal_type(litval),where_subst,where_env>

else if expr_kind = ident then
<inst_type,subst,inst_env>

else ~-- expr_kind = application
<new_vbl,func_subst,new_env>

where <func_subst, func_type> =
unify(arg subst,funcid_type,
<mapping,arqg_type, new_vbl>)
1
and <new_vbl, new_env> = freshvbl (arg_env)
and <arg type,arg_subst,arg_env> =
type_check (<arg,<>>,funcid_subst,funcid_env)
and <funcid_type,funcid_subst,funcid env> =
type_check (<func,<>>,where_subst,where_env)
and <where_subst,where_env)> =
typecheck_wheres (where_part,subst,env)
and <expr_part,where_part> = expr
and expr_kind:expr_val = expr_part
and <dlitval> = expr_val -- for literals
and <inst_type,inst_env> =
remove_quant (id_type(idval, emnv), env)
and <idval> = expr_val -- for identifiers
[ 3
and <func,arg> = expr_val -- for applications A
The function "typecheck_wheres" checks the type of eachy
definition in a where clause and returns the updated substitutio E
list and environment. 1Its definition follows. .i
R
def ine typecheck_wheres(wheres,subst,emv) = ~4
X3
8 r
1'#\
l"“

v e

1S
SR R P N L S A U L MR G W IR A
» ".‘\ N I A AR A B DJ'.- >~ e o+ IV ' » .-'v",}xf"f 3



-- Given substitution list "subst" and enviromment "env"”,
-- augment them with the results of type checking the

-- given list of where clauses (definitions). The

-- returned value is the pair <substl,envl> where

-- "substl"™ is the new substitution list and "envl” is
-- the new enviromment.

if wheres = <> then <subst,emnv>
else typecheck_def(head(wheres),tail_subst,tail_env)

where <tail_subst,tail_env> =
typecheck_wheres(tail (wheres) ,subst, env)

The function "typecheck_def" checks the type of a single
definition and returns the updated substitution list and environ-
ment. It does this in the following fashion. The definition is
in the form "<name,args,expr>", where "name” is the name of the
identifier or function being defined, "args"™ is the list of
arquments (which may be empty)., and "expr" is the defining
expression. A list of new type variables, "arg_vbls", is
created, containing one type variable for each argument in
"args." The expression "expr" is type checked, yielding a type
"epxr_type." The type of the function being defined is then that
type which, given arguments of the types constituting the list
"arg_vbls", produces an argument of type "expr_type." This new
type information is inserted in the updated emvironment that is
retur ned.

As an example of how "typecheck_def" works, consider the
function definition

define f(x,y) = x ° head(y)

(""" is the string concatenation operator.) The list "arg vbls"
consists of two fresh type variables for the arguments "x" and
"y", say "alpha" and "beta." Type checking of the expression on
the right hand side yields the type expression "string", and the
substitutions "string" for "alpha" and "seq(string)"®" for "beta."
Thus, "f" takes one argument of type "string"” and another of type
"seq(string)" and returns a result of type "string®", or

string -> (seq(string) -> string)
The Ernest code for "typecheck_def" is as follows:

def ine typecheck_def (def,subst,emv) =

-- Type check a definition. The returned value is the
-- pair <substl,emwvl> where "substl" is the new
~- substitution list and "envl" is the new enviromment.

{expr_subst,newenv>

~ -

PP SN I TR R I YW e e gV LY R e TR A L
Pl e f e LS -r ‘"»"‘\' .1_. L ROGY

»
" -
..... ol

‘




Bt
AL
i%&
ot}
’,:2,: where newenv = insert_env{(name,funcdeftype,expr_env)
ot and funcdeftype = functype (arg_vbls,expr_type,
\‘\ exXpr_env, expr_subst)
)
,- and <expr_type,expr_subst,expr_env> =
ﬁ:? typecheck (expr,subst,arg_env)
ol and <arq vbls,arg env> = addargs(args,env)
At
'&" and <name,args,expr> = def
a'ﬂ‘g'
i
Ay The functions "func_type®, which builds the type of a func-
, tion from the types of its arguments and its return value, and
W "add_args", which assigns type variables to the arguments and
""ﬁ" updates the environment with the assignments, are defined as
.‘:.',:: follows:
g
. define func_type(arg_vbls,expr_type,env,subst) =
0
:3'2 -- Return the type of a function, given the types of its
o -- arguments ("arg_vbls") and the type of its returned
3 -- value ("expr_type").
if arg_vbls = <> then rep(expr_type,subst)
ra else <mapping,rep(first_argvbl,subst),
‘:Cj func_type (rest,expr_type,env, subst)>
‘:: where first argvbl:rest = arqg_vbls
7_.
SOSA define add_args(args,emv) =
o
';}'; -- Add type variables corresponding to the list of
‘o ~-- arquments ("args") to the enviromment. The returned
b -- wvalue is <vbls,envl>, where "vbls" is the list of type
! -- variables added and "envl" is the new enviromment.
vy
-s":- if args = <> then <<>,env>
7, else <new_vbl :rest_vbls,ins_env>
435
N where ins_env = insert_env(first_arg,new_vbl,new_env)
o and <new_vbl,new_erv> = freshvbl (rest_env)
S
:I::: and <rest_vbls,rest_env> = add_args(rest,env)
.
e and first_arg:rest = args
.|‘l
The following low~level functions were used without beint
e defined in the above definitions:
LY

e X Bt e R Tt



v M ke A N Al add AL RS AL o e wow ¥
e Tl it S B B G o at b o 0l a s ca sl S-S acat arian UL At RitA A S Ak An LA L RS - e e

‘M‘VVWT' M
L P AP »'

,,
:';L k

o IR

~
s

0 "Literal_type(litval)" returns the type of the literal value
"litval."

o "Id_type(idval,env)" returns the type of the identifier
"idval®™ by looking it up in the environment "env."

o "Freshvbl(env)" creates a fresh variable, returning the
newly created variable and the updated environment.

o "Remove_quant(t,env)" gives type expression "t" a unique set
of fresh variables and returns the new type expression and
an updated environment. For example, it would replace

alpha -> (alpha -> integer)
by
gamma -> (gamma -> integer)

where "gamma" is a fresh variable.

o "Insert_env(name,type,emnv)" returns a new environment which
includes the information that the identifier named "name"
has type "type."

These functions are straightforward to implement.

T™wo details have been glossed over in the above description.
One is that the types of Ernest primitive functions must be
defined before any other functions can be type checked. This can
easily be accomplished by preloading the environment with these
type definitions. The other is that we have not discussed the
scope of identifiers and their visibility within an environment.

We assume these details are taken care of by the functions that
interact with the environment.

In addition, two type construction operations that are
essential for a useful language, enumerated types and discrim-
inated unions (variant records), have not been addressed. We
believe these two type classes can be integrated into our type
checking algorithm without great difficulty.

Correctness and Efficiency

There is much to be said for the simplicity and clarity of
functions defined without type declarations and, indeed, this
should continue to be an option. Nevertheless, there are two

strong arguments for allowing users to provide type information:
correctness and efficiency.

Correctness. If the user is permitted to specify the types
of functions and constrain the allowable operations on data, this
additional information can be used to help detect program errors.
For example, it is probably not meaningful to add telephone

11




2

£

numbers to Social Security numbers, even if they are both repre-
sented by integer values. The type checker we have described
cannot prevent such abuses.

Efficiency. There may be situations in which a user, know-
ing that the full generality of a polymorphic function is not
necessary, is willing to trade flexibility for efficiency. For
instance, if a function involves only arithmetic operations on
its arquments, the type checker will determine that the argquments
can be either real or integer. The decision to perform real or
integer operations will be made at run-time, incurring some
overhead. If the user could optionally specify that all argu-
ments are reals, for example, the compiler could generate more
efficient code that handles only real values. An attempt to call
the function with integer argquments, however, would result in a
type violation.

Improvements can be made in type checking thoroughness and
in run-time efficiency by selectively introducing type declara-
tions. The language changes required to support this capability §
are subjects for further research and development. i

Conclusions

We have presented a program for type checking Ernest pro- -
grams, which is written in Ernest. The program actually derives d
the type of functions, so that function definitions do not]}
require type declarations. The type checker supports polymorphlc.
functions and derives the most general interpretation of each’
function's type. In addition, the text of this program very:'
Closely follows textbook examples of type-derivation and type—f
checking algorithms.

&

References N
l. Meeson, R., Ernest User's Guide, Computer Technol ogy ASSO'u
ciates, July 1986. i

2. Curry, H.B., and R. Feys, Combinatory Logic, North-Holland: {
Amsterdam, 1958. (‘

g,

o
3. Milner, R., "A Theory of Type Polymorphism in Programming" »‘

J_§ 5913 Computer and System Sciences, Vol. 17, 1978, pp. 348[

\-

4. Aho, A., R. Sethi, and J. Ullman, Compjlers: P;;gg;plggk,
Techniques, and Tools, Addison-Wesley, 1986. };.




Annex D. BIBLIOGRAPHY

o ! y r )
. LGOS S TR , a
R’;‘"‘g,lf;‘!.?z,l¢h¢,°_l:«";# Vgt "h‘q,’!‘w‘b KO ;‘>‘.;"-q',-w;a‘ BRSO AR AL "

3 , R O IO O OO O 0 03
S N I X A K S I O I



N W T TETTET R WYV O WTWIYT W TN W T T R W LT

Arvind, Kathail, V., and Pingali, K.K., "Sharing of Computation
in Functional Lanquage Implementations”", Proceedings of the ACM
International Workshop on High-Level Language Computer
Architecture, May, 1984.

Augustsson, L., "A Compiler for Lazy ML", Conference Record of

the 1984 ACM Symposjum op LJSP and Functional Programming,
August, 1984, pp. 218-227.

Augustsson, L., "Compiling Pattern Matching", Functional
Prograpming Languages and Computer Architecture, Proceedings
1985, Jouannaud, J., Ed., LNCS, vol. 201, Springer-Verlag, 1985,
pp. 368-381.

Backus, J., "Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs"
g.gji\mym.cﬂmn_s of the ACM, vol. 21, no. 8, August, 1978, pp. 613-

Backus, J., "Function Level Programs as Mathematical Objects”,

Proceedings of the 1981 ACM Conference on Functional Programming
Lapguages apd Computer Architecture, October, 1981, pp. 1-10.

Backus, J., "Pr:ogrammlng Language Semantics and Closed

Appl icative Languages", Conference Record of the ACM Symposium on H
Pripciples of Programming Lapguages, October, 1973, pp. 71-86.

Bellegarde, F., "Rewriting Systems on FP Expressions that Reduce 9
the Number of Sequences They Yield", Conference Record of the:

1984 ACM Symposium on LISP and Functional Programming, August, )
1984, pp. 63-73. r
*

Bellot, P., "High Order Programming in Extended FP", E‘ygc_t_;_gn_a_l;
Prograpming Lapguages apd Computer Architecture, Proceedingswh
1985, Jouannaud, J., Ed., LNCS, vol. 201, Springer-Verlag, 1985,1
pp. 65-80. \!

~

Berkling, K.J., "Reduction Languages for Reduction Machines" ,-c

Proceedings of the Second Appual IEEE Symposium on Compute -i
Architecture, January, 1975, pp. 133-145.

L
.

.‘%
Bohm, C., "Combinatory Foundation of Functional Programming" ,p

Conference Record of the 1982 ACM Symposium onp LISP ms«
Fupctional Programming, August, 1982, pp. 29-36. <)

. K
Brownbrldge, D.R., "Cyclic Reference Counting for Combinatof:
Machines", Functiopal Prograpming Languages and CQII\PBI-.&{-L
drchitecture, Proceedings 1985, Jouannaud, J., Ed., LNCS, vol’}
201, Springer-Verlag, 1985, pp. 273-288. oA

)
.I‘

Buneman, P., Nikhil, R, and Frankel, R., "A Practical Functlona

Programming System for Databases", Proceedings of the 1981 A

Conference on Functiopal .P.r_osr.ammms Lapnguages and §.ompy_t.e-h
Archbitecture, October, 1981, pp. 195-201. »‘
‘ t

LA

v Bt y ,{“ e, 0%, 19 ARSI, Ty Wiy ‘,.,.\'\ -’. J_. MRS Y AT
.;ﬂm'i" N l's.h!'t N e A ) AT "' 'd:"‘ “‘" " %




=
}

?.-'- y
-
-

(RIS Lw 37 3™ WM W WA g tadng
RSO AT SR 5 TS hN G M N ?of.l?:"’t.'.'n!l'»,iQm' AR AN

T W W W T W R O WM T T YRR VWIS LTS YWY W YT W L W T W W W W T W M T W TT W v o o -...._1

Burge, W.H., "Combinatory Programming and Combinatorial

Analysis", IBM Jourpal of Research and Development, vol. 16, no.
5, September, 1972, pp. 450-461.

Burge, W.H., Recursjve Programming Technigques, Addison-Wesley
Publishing Co., Reading, Mass., 197S.

Burge, W.H., "Stream Processing Functions", IBM Journal of
Bg;s.eush and Development, vol. 19, no. 1, January, 1975, pp. 12-
25,

Burstall, R.M., and Darlington, John, "A Transformation System

for Developing Recursive Programs™, Journal of ACM, vol.24, no.
1, January, 1977, pp. 44-67.

Burstall, R.M., MacQueen, D.B., and Sannella, D.T., "HOPE: An

Experimental Applicative Language®, Proceedings of the 1980 ACM
LISP Conference, August, 1980, pp. 136-143.

Burton, F.W., and Sleep, M.R., "Executing Functional Programs on

a Virtual Tree of Processors", Proceedings of the 1981 ACM

Conference on Functiopal Programming Languages and Computer
Architecture, October, 1981, pp. 187-194.

Bush, V.J., and Gurd, J.R., "Transforming Recursive Programs for
Execution on Parallel Machines", Functional Programming Lanquages
and Computer Architecture, Proceedings 1985, Jouannaud, dJ., Ed.,
LNCS, vol. 201, Springer-Verlag, 1985, pp- 350-367.

Cardelli, L., "Compiling a Functional Language", Conference

Record of the 1984 ACM Symposium on LISP and Fupctional
Programming, August, 1984, pp. 208-217.

Cartwright, R., and Donahue, J., "The Semantics of Lazy (and

Industrious) Evaluation", Conference Record of the 1982 ACM

gsszgp_zoészwm on LISP and Functiopal Programming, August, 1982, Pp-

Clack, C., and Peyton Jones, S.L., "Strictness Analysis -- A

Practical Approach”, Functiopal Programming Languages and
SComputer Archjtecture: Proceedings 1985, Jouannaud, J., Ed.,
LNCS, vol. 201, Springer-Verlag, 1985, pp. 35-49.

Clarke, T.J.W., Gladstone, P.J.S., MacLean, C.D., and Norman,
A.C., "SKIM -- The S, K, I, Reduction Machine", Proceedings of
the 1380 ACM LISP Copference, August, 1980, pp. 128-135.

Coppo, M., "An Extended Polymorphic Type System for Applicative
Languages”, Matbematical Foundations of Computer Science,
Proceedings 1980, Dembinski, P., Ed., LNCS, vol. 88, Springer-
Verlag, 1980, pp. 194-204.

Curry, H.B., and Feys, R., Combinatory Logig¢, vol. 1, North-
Holland Publishing Co., Amsterdam, 1958.

POaS L -~

b '0.

o R T e Ny R & T S N Ly
PHANAANAY *“-"-» MYGAGHRARA AR SRS

Baall o8l



.
:‘1":

L

<y Cousineau, G., Curien, P.L., and Mauny, M., "The Categorical
e Abstract Machine", Functiopal Programming lLanguages and Computer
‘ Architecture, Proceedings 1985, Jouannaud, J., Ed., LNCS, vol.
o 201, Springer-Verlag, 1985, pp. 50-64.

( Dannenberg, R.B., "Arctic: A Functional Language for Real-Time
o Control”, Conference Record of the 1984 ACM Symposjum on LISP and
Functional Programming, August, 1984, pp. 96-103.

X Damas, L., and Milner, R., "Principal Type-Schemes for Functional
0y Programs”, Conference Record of the Nintb Apnnual ACM Symposium on
N Principles of Programming lLanguages, January, 1982, pp. 207-212.
b

A Darl ington, J., Henderson, P., and Turner, D.A., Eds., Functional

Programming and its Applications: Ap Advanced Course, Cambridge

s University Press, Cambridge, 1982.

'” Darlington, J., and Reeve, M., "ALICE: A Multi-Processor
'2;. Reduction Machine for the Parallel Evaluation of Applicative
oA Languages", Proceedings of thbe 138l Conferepce on Functiopal
X EJ_Og.g.gmg%ns Languages and Computer Architecture, October, 1981,

PP- =/5.

g Dennis, J.B., "Programming Generality, Parallelism and Computer
AN Architecture®, Ipformation Processipg 68;: Proceedipgs of IFIP
Congress 1968, Morrell, A.J.H., Ed., vol. 1, North-Holland
Publishing Co., Amsterdam, pp. 484-492.

';"‘ Dosch, W., and Moller, B., "Busy and Lazy FP with Infinite
T4 Objects", Conference Record of the 1984 ACM Symposium on LISP and
o Functjonal Programming, August, 1984, pp. 282-292.

Vj Feldman, G., "Functional Specifications of a Text Editor",
AN Conference Record of the 1382 ACM Symposium op LISP and
N Functional Programming, August, 1982, pp. 37-46.

-\.’__*,.

R Frank, G.A., "Specification of Data Structures for FP Programs"”,|
po Proceedings of the 1981 ACM Conference op Functional Prodrammjngy
| Languages and Computer Architecture, October, 1981, pp. 221-228.

RS .
:f-lj Friedman, D.P., and Wise, D.S., "CONS Should Not Evaluate itg
:;I::-_ Arguments”, Automata, Languages and Programming, Michaelson anc
s, Milner, Eds., Edinburgh University Press, Edinburgh, 1976, ppa«
A 257-284.

) y
:' Friedman, D.P., and Wise, D.S., "An Approach to Fair Appl icativiy
D Multiprogramming”, Semantics of Concurrent Computatjon, G. Kahnyy
S7a Ed., LNCS, vol. 70, Springer-~Verlag, 1979, pp. 203-225. QR
"f:‘: ~y
o Georgeff, M.P., "A Scheme for Implementing Functional Values on >3
i Stack Machine", Conference Record of the 1982 ACM Symposium
" LISP and Functjopal Progarapming, August, 1982, pp. 188-195. )
i :
o :
R 2
(AN )
- »
0:.?.4' 3 N
\ “ '*' N B 2= "

-.*'\ )

o2, DN TR A %Y WSRO L SN ¥ Aoy
IO ,'., O D I R L L D (L O AODIDIROPRNE .. KRGl ‘t"'\“o-ﬂ"'::‘-"‘n' W00



WY WUMTRE ™ b "W ™ "IN PR =" %7 o - - - - - —_— -
P T T T T T T T O W Y Y N T Y W T W T N T Y T WY PV T VU VU W T W T W U W N WY W

TTETA L

Givler, J.S., and Kieburtz, R.B., "Schema Recognition for Program
Transformations®, Conference Record of the 1984 ACM Symposium on
LISP and Functiopal Programming, August, 1984, pp. 74-84.

Grit, D.H., and Page, R.L., "Performance of a Multiprocessor for

Applicative Programs”, Proceedings of Performance 80: The Seventh o
JFIP Working Group International Symposjum op Computer |
Performance Modelling., Measurement, apd Evaluation, ACM J
SIGMETRICS, vol. 9, no. 2, May, 1980, pp. 181-189. |

WS N7 YT

Gurd, J., and Watson, I., "Data Driven System for High Speed
Parallel Computing - Part l: Structuring Software for Parallel

Eacgcution", Computer Desigpn, vol. 19, no. 6, June, 1980, pp. 91~ |
100.

v
ol
gy

Guttag, J., Horning, J., and Williams, J., "FP with Data
Abstraction and Strong Typing®", Proceedings of the 1981 ACM

Conference on Functjonal Prodramming and Somputer Architecture,
October, 1981, pp. 11-24.

Harrison, P., Khoshnevisan, H., "Efficient Compilation of Linear
Recursive Functions into Object Level Loops", Proceedings of the

?ﬁ%‘f},ﬁ 186 Symposium on Compiler Construction, June, 1986, pp.

Henderson, P., "Functional Geometry", Conference Record of the
1982 ACM Symposium on LISP and Functional Programming, August,
1982, pp. 179-187.

Henderson, P., Functional Programming; Application and
Implementation, Prentice-Hall International, Inc., London, 1980.

Henderson, P., "Functional Programming, Formal Specification, and

Rapid Prototyping', JEEE Transactions on Software Engineering,
vol. se-12, no.2, February, 1986, pp. 241-250.

Henderson, P., and Morris, J.H., "A Lazy Evaluator", Copference
Record of the Third ACM Symposium on Pripciples of Programming
languages, January, 1976, pp. 95-103.

Hudak, P., and Goldberg, B., "Experiments in Diffused Combinator
Reduction”, Conference Record of the 1984 ACM Symposium on LISP
apnd Functional Programming, August, 1984, pp. 167-176.

Hudak, P., and Keller, R.M., "Garbage Collection and Task
Deletion in Distributed Applicative Processing Systems",
fonference Record of the 1982 ACM Sypposium opn L1SP and
functional Programming, August, 1982, pp. 168-178.

Hudak,' P., and Kranz, D., "A Combinator-based Compiler for a
Functional Language"”, Copference Record of the 1lth Annual ACM

fgmpfffﬂ{ggﬂ Principles of Progaramming languages, January, 1984,
p ' - .

n

e

o W Mo g €y P s e Ca @ e € W ¥ (T T v,
e ~ LA Nl T S S B AP IR NS .:2:'\-:\ R
:._J' 5;':‘.;-.":’;.,‘.’ PN, n.{\'A&':-.'_\.{_“ C&}_&{_L’_‘.




-rv-,ww“vﬁ-ﬂﬁvvﬁwvwrwtwwww-‘"_ THEESWITRETWTRTR RS ROTER O T TSI OTRTOR LWL T LEFLFLOTAT R TA RS 11

o
e Ve
\f’.

Hughes, J., "A Distributed Garbage Collection Algorithm?",
Fupnctional Programming lLapguages apd Computer Architecture,
Proceedings 1985, Jouannaud, J., Ed., LNCS, vol. 201, Springer-
Verlag, 1985, pp. 256-272.

by Hughes, J., "Lazy Memo-functions®, Functiopnal Programming
R Languages and Computer Architecture; Proceedings 1985, Jouannaud,
._";4- J., Ed., LNCS, vol. 201, Springer-Verlag, 1985, pp. 129-146.

Hughes, R.J.M., "Super Combinators: A New Implementation Method
KA for Applicative Languages”, Conference Record of the 1982 ACM
§5& §y¥§9§;ym on LISP and Functional Programming, August, 1982, pp.
> - .

Islam, N., Myers, T.J., and Broome, P., "A Simple Optimizer for
FP-like Languages”, Proceedings of the 1981 ACM Conference on
Eypsgggggl Programming and Computer Architecture, October, 1981,
pPp- =33.

Jones, A.K. et al, "Programming Issues Raised by a

Multiprocessor®, Proceedings of the IEEE, vol. 66, no. 2,
February, 1978, pp. 229-237.

Jones, N.D., and Muchnick, S.S., "A Fixed-Program Machine for
Combinator Expression Evaluation®, Conference Record of the 1382
ACHM f¥n§§§;ym on LISP apd Functiopal Programming, August, 1982,
ppo - .

Kapur, D., Musser, D.R., and Stepanov, A.A., "Operators and
Algebraic Structures”, Proceedings of the 1981 ACM Conference on

Functjonal Programming Languages and Computer Architecture,
October, 1981, pp. 59-63.

Katayama, T., "Type Inference and Type Checking for Functional
Programming Languages: A Reduced Computation Approach®,
Conference Record of the 1984 ACM Symposjium on LISP and
Functiopal Programming, August, 1984, pp. 263-272.

Keller, R M., "Divide and CONCer Data Structuring in Applicative

Multi-processing Systems", Proceedings of the 1980 ACM LISP
Conference, August, 1980, pp. 196-202.

Keller, R.M., and Lindstrom, G., "Applications of Feedback i ;

Functional Programming”", Proceedings of the 1981 ACM Conferenc

op Functional Programming and Computer Architecture, October;
1981, pp. 123-130.

Keller, R.M., and Sleep, M.R., "Appl icative Caching: Programmexg.
Control of Object Sharing and Lifetime in Distributee
Implementations of Applicative Languages", Proceedings of _t.hf
1981 ACM Copference op Fupctiopal Prograpmming Lapguages ani
Computer Architecture, October, 1981, pp. 131-140.

PN
NN

»

LS

"

5 5

N

AN

Pyt

L -
BAN L W W e W e I TR T e G o N T L T R L . L A \\\y\.\\\\\ P AR S i e SRR Y

! .l' EREAF AR AT AN O
NS Thata S USRI A PO 'F"" R A "'“‘ o e inde RIRTAN v %y




Lgn % 4

Kennaway, J.R., and Sleep, M.R., "Expressions as Processes"”,
Conference Record of the 1982 ACM Symposium on LISP and
Functional Programming, August, 1982, pp. 21-28.

Kennaway, J.R., and Sleep, M.R., "Parallel Implementation of
Functional Languages", Proceedings of the 1382 International
Conference on Parallel Processing, August, 1982, pp. 168-170.

Kieburtz, R.B., and Shultis, J., "Transformation of FP Program
Schemes", Proceedings of the 1981 ACM Conference on Functional
Programming and Computer Architecture, October, 1981, pp. 41-48.

Landin, P.J., "A Correspondence Between Algol 60 and Church's

Lambda-Notation, Part II", Communjcations of the ACM, vol. 8, no.
3, March, 1965, pp. 158-165.

Landin, P.J., "The Mechanical Evaluation of Expressions",
Computer Jourpal, vol. 6, no. 4, January, 1964, pp. 308-320.

Landin, P.J., "The Next 700 Programming Languages®,
%gglmym_ca_tim_s of the ACM, vol. 9, no. 3, March, 1966, pp. 157-

Lindstrom, G., "Static Evaluation of Functional Programs,

Proceedipngs of tbe SIGPLAN '86 Symposium on Compiler
fonstruction, June, 1986, pp. 196-206.

MacQueen, D.B., "Modules for Standard ML", Conference Record of

the 1984 ACM Symposium opn LISP and Functiopal Programming.
August, 1984, pp. 198-207.

MacQueen, D.B., and Sethi, R., "A Semantic Model of Types for
Applicative Languages”, Conference Record of the 1382 ACM

gﬁtpf.ssiwm on LISP and Fupnctional Programming, August, 1982, pp.

Mago, G.A., "A Cellular Computer Architecture for Functional

i’gggramming": IEEE COMPCON Spring 80, February, 1980, pp. 179~

Mago, G.A., "A Network of Microprocessors to Execute Reduction

Languages, Part 1%, JInterpatiopal Journal of Computer and
Information Sciences, vol. 8, no. 5, October, 1979, pp. 349-385.

Mago, G.A., "Copying Operands Versus Copying Results: A Solution
to the Problem of Large Operands in FFP's", Proceedings of the
1981 ACM Conferepce on Functiopal Programming Lapguages and
Somputer Architecture, October, 1981, pp. 93-97.

Mago, G.A., "Data Sharing in an FFP Machine", Conference Record

of the 1982 ACM Symposium on LISP angd Functional Programming.,
August, 1982, pp. 201-207.




i TENETEHTIE T EAN T EFTR LR MWW W e LR ".—1
-
7o |

d\qd‘: d‘j 4'.."

Malachi, Y., Manna, 2., and Waldinger, R., "TABLOG: The
Deductive-Tableau Programming Language", Conference Record of the

1984 ACM Symposium on LISP and Functional Programming, August,
1984, pp. 323-330.

their Computation by Machine, Part 1", Communications of the ACM,

McCarthy, J., "Recursive Functions of Symbolic Expressions and {
|
VOl. 3] No. 4' Aptil, 1960] ppo 184"195. |

Milne, R.D., and Strachey, C., A Theory of Programming Lapguage ‘
Semantics, Chapman and Hall, London, 1976. !

Milner, R., "A Proposal for Standard ML", Conference Record of ]

the 1984 ACM Symposium on LISP apd Functiopal Programming.
August, 1984, pp. 184-197.

Nikhil, R.S., "Practical Polymorphism", Fupctional Programming

lLanguages and Computer Architecture, Proceedings 1985, Jouannaud,
J., Ed., LNCS, vol. 201, Springer-Verlag, 1985, pp. 319-333.

Nordstrom, B., "Programming in Constructive Set Theory: Some

Examples”, FProceedings of the 1381 ACM Conference on Functiopal
{Jsréosxémmins and Computer Architecture, October, 1981, pp. 141-

Page, R.L., Conant, M.G., and Grit, D.H., "If-then-else as a
Concurrency Inhibitor in Eager Beaver Evaluation", Proceedings of
the 1981 ACM Conference op Functional Programming Languages and
Computer Architecture, October, 1981, pp. 179-186.

)

Pargas, R.P., and Presnell, H.A., "Communication Along Shortest
Paths in a Tree Machine", Proceedings of the 1981 ACM Copference

on Fupctional Programming Languages and Computer Architecture,
October, 1981, pp. 107-114.

Peterson, J.C., and Murray, W.D., "Parallel Computer
Architecture Employing Functional Programming Systems",
Proceedings of the ACM Interpational Workshop on High-Level
Language Computer Architecture, May, 1980, pp. 190-195.

Peyton Jones, S.L., "An Investigation of the Relatlve'-
Efficiencies of Combinators and Lambda-expressions", Q_o.nf_e_:_e_n_c_e.
Record of the 1982 ACM Symposium op LISP and hm_c_t;_on.ar
Programming, August, 1982, pp. 150-158.

l 1
Pingali, K., and Arvind, "Efficient Demand-Driven Evaluation’

)
Part 1", ACM Trapnsactions op Programming lLanguages and Systems. 7
vol.7, no.2, April, 1985, pp. 331-333.

Y

Rosser, J.B., "Highlights of the History of the Lambda-Calculus"..

Conference Record of the 1282 ACM Symposium on LISP anff;
Functiopal Programming, August, 1982, pp. 216-225. :

NS (.‘J'_' R
§a '.r!ia !ﬁi "I"! -/,



B . AR M AsdAla e s an: o 0. _as” ot _an oan 08 o0a alh odd i Ah ef ge st AR LA A AL ol R A Al A i AR

Schwartz, J.T., "Automatic Data Structure Choice in a Language of
Very High Level®", Copference Record of the Second ACM Symposium
on Principles of Programming lLapguages, January, 1975, pp. 36-40.

Scott, D.S., "Logic and Programming Languages®, Communjcations of
the ACM, vol. 20, no. 9, September, 1977, pp. 634-641.

Scott, D., and Strachey, C., "Towards a Mathematical Semantics
for Computer Languages", Proceedings of tbe Symposium on
Computers and Automata, Microwave Research Institute Symposia
Series, vol. 21, Polytechnic Press, Polytechnic Institute of
Brooklyn, N.Y., 1971, pp. 19-46.

Sheeran, M., "muFP: A Language for VLSI Design”", Conference

Record of the 1984 ACM Symposium on LISP and Functiopal
Programming, August, 1984, pp. 104-112.

Sintzoff, M., "Proof-oriented and Applicative Valuations in

Definitions of Algorithms", Proceedings of tbe 1981 ACM
Conference on Functional Programming Languages apd Computer
Architecture, October, 1981, pp. 155-162.

Sleep, M.R., "Applicative Languages, Dataflow, and Pure

Cfxznblilr;atory Code", IEEE COMPCON Spring 80, February, 1980, pp.
112- .

Stanat, D.F., and Williams, E.H., "Optimal Associative Searching

on a Cellular Computer”, Proceedings of the 1981 ACM Conference

on Functional Programming Languages and Computer Architecture,
October, 1981, pp. 99-106.

Stoy, J.E., Denotational Semantics: Tbe Scott-Strachey Approach
to Prograpming Language Theory, MIT Press, Cambridge, Mass, 1977.

Stoye, W.R., Clarke, T.J.W., and Norman, A.C., "Some Practical
Methods for Rapid Combinator Reduction", Conference Record of the

1384 ACM Symposium op LISP and Functiopal Programming, August,
1984, pp. 159-166.

Tesler, L.G., and Enea, H.J., "A Language Design for Concurrent

zgcéoesses". AFIPS Conference Proceedings, vol. 32, 1968, pp. 403-

Toole, D.M., "Implanting FFP Trees in Binary Trees",

Proceedings of the 1981 ACM Conference op Functional Programming
apnd Computer Architecture, October, 1981, pp. 115-122.

Treleaven, P.C., Brownbridge, D.R., and Hopkins, R.P., "Data-
driven and Demand-driven Computer Architecture", ACM Computer
Surveys, vol. 14, no. 1, March, 1982, pp. 93-143.

Treleaven, P.C., and Hopkins, R.P., "Decentralised

Computation”, Proceedings of the Eighth International Symposium
op Computer Architecture, May, 1981, pp. 279-290.




Fﬂvﬂi-t-t‘vi vy w
.
-

»

-
Y.

LA A LA

=

.
L

AW

Y e

BT LYy s o i
PSP LS LAl

o AN

A, A =

e A A Ak heha A Ale Ata At Ate Abs A Ada Sl afe AlaAEusad tad vak Wb Sl Ged Sob Sud i Sal Snd Babh Sk ek Bnk SeiC i haio Sk Al gl J‘l"?"l“."i*

Turchin, V.F., "The Concept of a Supercompiler”, ACM Transactions
on Pr§o§1§mmins Languages and Systems, vol. 8, no. 3, July, 1986,
pp. 292-325.

Turner, D.A., "A New Implementation Technique for Applicative

Languages", Software -- Practice apnd Experience, vol. 9,
September, 1979, pp. 31-49.

Turner, D.A., "A Non-strict Functional Language with Polymorphic

Types", Fubctiopal Programming Languages and Computer

Architecture, Proceedings 1985, Jouannaud, J., Ed., LNCS, vol.
201, Springer-Verlag, 1985, pp. 1-16.

Turner, D.A., "The Semantic Elegance of Appl ica.tive Languages”,
Proceedings of the 1381 ACM Conference on Functional Programming
Languages and Computer Architecture, October, 1981, pp. 85-92.

Ullman, J.D., "Some Thoughts about Supercomputer Organization®,
JEEE COMPCON Spring 84, February, 1984, pp. 424-432.

Vegdahl, S.R., "A Survey of Proposed Architectures for the

Execution of Functional Languages", JIEEE Transactions on |
Computers, vol. c¢-33, no. 12, December, 1984, pp. 1050-1071. i

Wadler, P., "Applicative Style Programming, Program
Transformation, and List Operators", Proceedings of the 1981 ACM 4
Conference on Functional Programming Languages and Computer
Architecture, October, 1981, pp. 25-32.

Wadler, P., "How to Replace Failure by a List of Successes", -

Fupctional Programming Languages apnd Computer Architecture. -
Proceedings 1983, Jouannaud, J., Ed., LNCS, vol. 201, Springer- 4
Verlag, 1985, pp. 113-128. r

Wadler, P., "Listlessness is Better than Laziness: Lazy:
Evaluation and Garbage Collection at Compile Time", Conference'

Record of the 1284 ACM Symposium op LISP and Functional v}
Programming, August, 1984, pp. 45-52.

Young, M.F., "A Functional Language and Modular Architecture for.¥l
Scientific Computing®, Fupctional Programmipg Lapguages andx:

Computer Architecture, Proceedings 1983, Jouannaud, J., Ed.,n
LNCS, vol. 201, Springer-Verlag, 1985, pp. 305-318. Y

)
[]

y
»

LRl e ]
Vet i

.............

A P e Tl Al T

]

QLY PR e



-

2
£

e
0 g oy A 478
X7 ?-'.' L

i &3

I

\!

‘ -
)

!
0
\
!

k% a
NN

b=, < =
Yula LY

=/

/|- 5%
T




